
ICARC Fox Transmitters

William Robison

July 1, 2025

ICARC FOX Transmitters: 102-73181 KC0JFQ

This is the start of a manual for the ICARC FOX Transmitters. It covers the 102-73161-25 board
as well as the 102-73181 series of boards.
The 102-73161-7 and 102-73161-12 boards are not expected to use this software.
It is a work-in-progress right now so suggestion for updates may be sent to
kc0jfq@n952.ooguy.com.

Full size documents may be found here: http://n952.ooguy.com/HamRDF

LATEX Source Files:
0. //home/wtr/Fox_Tx73181/trunk/FOX_ICARC.tex
1. 1 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Glossary.tex
2. 3 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Motivation.tex
3. 9 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Revision_History.tex
4. 23 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Theory_Operation.tex
5. 97 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Operation.tex
6. 123 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Assembly.tex
7. 127 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Haywires.tex
8. 129 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Commissioning.tex
9. 137 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Software.tex

10. 163 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Commanding.tex
11. 225 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Practical_Sequencing.tex
12. 235 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_fox_simple_Utility.tex
13. 251 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_fox_clock_Utility.tex
14. 257 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_zNEO_Hardware.tex
15. 273 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Audio_File_Utility.tex
16. 281 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Label_Utility.tex
17. 295 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Synthesizer_utility.tex
18. 309 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Assorted_Topics.tex
19. 317 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Actual_config.tex
20. 365 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Sample_Output.tex
21. 369 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Power_Worksheets.tex
22. 373 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Worksheets.tex
23. 383 //home/wtr/Fox_Tx73181/trunk/FOX_ICARC_Hunt_Rules.tex

Contents

1 Glossary of Terms 1
1.1 Chirp . 1
1.2 Chip & Chipping . 1
1.3 FLASH . 1
1.4 FRAM . 1
1.5 ISR . 2
1.6 MMIC . 2
1.7 Processor . 2
1.8 Program . 2
1.9 Sequence . 2
1.10 TOY Clock . 2
1.11 xxx . 2

2 Motivation 3
2.1 Requirements . 3

2.1.1 2M Band . 3
2.1.2 Multiple frequency . 3
2.1.3 Battery Operation . 4
2.1.4 Code Storage . 4
2.1.5 Physical Size . 4
2.1.6 Programmable without special tools . 4

2.2 Desirements . 5
2.2.1 Dynamic frequency . 5
2.2.2 Multiple band . 5
2.2.3 Operation on 80M . 5
2.2.4 Large CW tables . 6
2.2.5 Voice Storage . 6
2.2.6 Easy Synchronization . 6
2.2.7 Long Battery Life . 6
2.2.8 Large memory footprints . 7

2.3 Scheduling Philosophy . 7
2.4 Fast Loading . 7

3 Revision History 9
3.1 Software . 9

3.1.1 V4.11 . 9
3.1.2 V4.10 . 9
3.1.3 V4.09 . 9
3.1.4 V4.08 . 10
3.1.5 V4.07 . 10

i

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.6 V4.06 . 10
3.1.7 V4.05(not working!) . 10
3.1.8 V4.04 . 11
3.1.9 V4.03 . 11
3.1.10 V4.02 . 11
3.1.11 V4.01 . 11
3.1.12 V4.00 . 12
3.1.13 V3.95 . 12
3.1.14 V3.94 . 12
3.1.15 V3.93 . 12
3.1.16 V3.92 . 12
3.1.17 V3.91 . 12
3.1.18 V3.90 . 12
3.1.19 V3.89 . 13
3.1.20 V3.88 . 13
3.1.21 V3.87 . 13
3.1.22 V3.86 . 13
3.1.23 V3.85 . 13
3.1.24 V3.84 . 13
3.1.25 V3.82 . 13
3.1.26 V3.81 . 13
3.1.27 V3.80 . 14
3.1.28 V3.77 . 14
3.1.29 V3.76 . 14
3.1.30 V3.75 . 14
3.1.31 V3.74 . 14
3.1.32 V3.73 . 14
3.1.33 V3.72 . 15
3.1.34 V3.71 . 15
3.1.35 V3.70 . 15
3.1.36 V3.69 . 15
3.1.37 V3.68 . 15
3.1.38 V3.67 . 15
3.1.39 V3.66 . 15
3.1.40 V3.65 . 16
3.1.41 V3.64 . 16
3.1.42 V3.63 . 16
3.1.43 V3.62 . 16
3.1.44 V3.59 . 16
3.1.45 V3.57 . 17
3.1.46 V3.56 . 17
3.1.47 V3.54 . 17
3.1.48 V3.53 . 17
3.1.49 V3.52 . 17
3.1.50 V3.51 . 18
3.1.51 V3.50 . 18
3.1.52 V3.31 . 18
3.1.53 V3.28 . 18
3.1.54 V3.30 . 18
3.1.55 V3.27 . 18
3.1.56 V3.26 . 19
3.1.57 V3.24 . 19

ii

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.58 V3.23 . 19
3.1.59 V3.21 . 19
3.1.60 V3.17 . 19
3.1.61 V3.16 . 19
3.1.62 V3.15 . 19
3.1.63 V3.14 . 20
3.1.64 V3.12 . 20
3.1.65 V3.10 . 20
3.1.66 V3.03 . 20
3.1.67 V3.02 . 20
3.1.68 V2.00/2.01 . 21

3.2 Hardware Revisions . 21
3.2.1 102-73181-10 . 21
3.2.2 102-73181-5 . 21
3.2.3 102-73181-0 . 21
3.2.4 102-73161-25 . 22

4 Theory of Operation 23
4.1 Block Diagram . 24
4.2 Schematics & Circuit Boards . 25

4.2.1 Power & Ground . 25
4.2.2 Net Connections . 26
4.2.3 Schematic Symbols . 26
4.2.4 Parts Lists . 29

4.3 RF Overview . 31
4.3.1 Motherboard Transmitter section . 31
4.3.2 VHF Power Amplifier . 32
4.3.3 VHF Transceiver Module . 32
4.3.4 Output Filter . 33

4.4 Frequency Selection . 36
4.4.1 SI5351 . 37
4.4.2 DRA818/SA818 . 39
4.4.3 ICS525 . 41
4.4.4 ICS307 . 41

4.5 Transmit Timing . 42
4.6 SI5351 Synthesis . 45

4.6.1 SI5351 Block Diagram . 45
4.6.2 SI5351 VCO Frequency . 47
4.6.3 SI5351 MSNA fraction . 47
4.6.4 SI5351 M0/M1/M2 fraction calculation . 47
4.6.5 SI5351 R0/R1/R2 divisors . 48

4.7 Voice . 48
4.7.1 Audio File System . 49
4.7.2 Audio File Utility . 51

4.8 TOY Clock . 51
4.8.1 The DS1672 . 52
4.8.2 Reading from the DS1672 . 52
4.8.3 The DS1672 Charge Control Circuit . 53
4.8.4 System Time . 55

4.9 Deviation Control . 56
4.10 Power . 58

4.10.1 Battery . 59

iii

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.10.2 Power Plot . 61
4.10.3 Fuse . 62
4.10.4 Power Switching . 62

4.11 Host Interface . 63
4.12 Configuration Order . 65
4.13 External Radio . 65
4.14 MASTER Jumper . 66
4.15 Processor . 66

4.15.1 Program Structure . 66
4.15.2 Software Toolchain Overview . 70
4.15.3 zNEO Programming . 71

4.16 FRAM and FLASH . 71
4.16.1 Device Detection . 71
4.16.2 FRAM . 72
4.16.3 FLASH . 72
4.16.4 EEPROM . 72
4.16.5 FLASH and FRAM JEDEC IDs . 73

4.17 RF Daughterboards . 76
4.17.1 102-73161-22: Bypass . 76
4.17.2 102-73161-24: Class-C . 77
4.17.3 102-73161-29 LVDS Class-C . 78
4.17.4 102-73161-28: MMIC . 80
4.17.5 102-73181-28: MMIC Chirp . 82
4.17.6 102-73181-71: MMIC/MMIC Chirp . 87
4.17.7 102-73181-86 HI Power Bipolar CHiRP . 89
4.17.8 102-73227-11: 80M Band . 92
4.17.9 102-73181-36 DRA818 1W RF transceiver . 94

4.18 Deprecated RF Amplifiers . 94
4.18.1 102-73161-12S . 95
4.18.2 102-73161-12M . 95
4.18.3 102-73161-21 MCPH6 MMIC 50Ω amplifier 95
4.18.4 102-73161-23 SOT89 MMIC 50Ω amplifier . 95
4.18.5 102-73161-27 90mW Class-D . 95
4.18.6 102-73181-22 DRA818 1W RF transceiver . 96
4.18.7 102-73181-24 DRA818 1W RF transceiver . 96
4.18.8 102-73181-34 DRA818 1W RF transceiver . 96

5 Operation 97
5.1 Power . 97
5.2 Antenna . 98
5.3 Jumpers . 98

5.3.1 Jumper JP2/JP3: MASTER/TEST . 99
5.3.2 Jumper JP4: USB Power . 99
5.3.3 Jumper JP5: LED . 99
5.3.4 Jumper JP6: BUZZER . 100
5.3.5 Jumper JP7: DB Power . 100

5.4 Resistor Jumpers . 100
5.4.1 Resistor Jumper: R26 . 100
5.4.2 Resistor Jumper: R5 & R6 . 100
5.4.3 Resistor Jumper: R15 & R18 . 101
5.4.4 Resistor Jumper: R1 & R9 . 101
5.4.5 Resistor Jumper: R64 & R22 . 101

iv

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.4.6 Resistor Jumper: R68 . 101
5.5 Time . 102

5.5.1 Time Network . 102
5.5.2 Time Synch Procedure . 102

5.6 External Frequency Tables . 104
5.6.1 AN551 (Skyworks) . 105
5.6.2 AN619 (Skyworks) . 106
5.6.3 AN1234 (Skyworks) . 106
5.6.4 Operating in the FM Broadcast band . 106

5.7 Audio Filesystem Loading . 106
5.7.1 Binary High-Speed Loading . 107

5.8 Developing A Message Sequence . 108
5.8.1 Identification and basic voice clips . 108
5.8.2 Initialization . 110
5.8.3 Announce . 111
5.8.4 Active Scheduling . 112

5.9 Deployment . 112
5.9.1 Deployment using multiple frequencies . 113
5.9.2 Dropping Stations at the Hunt . 114

5.10 External Transceiver . 114
5.10.1 VCMO_TONE . 115
5.10.2 FILT_TONE . 115
5.10.3 AC_TONE . 115
5.10.4 PTT . 116
5.10.5 VBATT . 116
5.10.6 V9.0 . 116
5.10.7 SWITCH . 116
5.10.8 PHOTO_CELL . 116
5.10.9 GNDP . 116

5.11 CHRP: Chirping . 116
5.11.1 R68 in alternate position . 117
5.11.2 R68 in primary position . 117
5.11.3 CONF DB_PWR . 118
5.11.4 Developing a CHIRP Sequence . 118

5.12 Modulation . 119
5.12.1 A1A . 119
5.12.2 F1A/F3E . 119

5.13 Status and Configuration Reporting . 119
5.13.1 Status Reports . 120
5.13.2 Configuration Reports . 121

6 Assembly 123
6.1 Board Procurement . 123
6.2 Board Inspection . 123
6.3 Parts Ordering . 124
6.4 Parts Labels . 124
6.5 Parts Placement . 124

6.5.1 5V Regulators . 125
6.6 Daughter board Mounting . 125

v

ICARC FOX Transmitters: 102-73181 KC0JFQ

7 Haywires 127
7.1 Audio/Voice . 127
7.2 TOY Clock Battery Maintenance . 127

8 Commissioning 129
8.1 Basic Tests . 129
8.2 RF Tests, SI5351 . 130

8.2.1 Xtal Test, SI5351 (20MHz) . 130
8.2.2 Xtal Test, SI5351 (144.100MHz) . 131

8.3 RF Tests, DRA818 . 132
8.4 Install backup battery . 132
8.5 Loading FRAM and FLASH . 132

8.5.1 Required Audio Files . 133
8.6 Power Evaluation . 135

9 Software 137
9.1 Scheduling . 137

9.1.1 Goals . 137
9.1.2 Fractional Seconds . 138

9.2 Scheduling Algorithm . 138
9.2.1 Scheduling Period . 139
9.2.2 Scheduling Offset . 139
9.2.3 Clock Synchronization . 139

9.3 Scheduling Flexibility . 139
9.4 Parameter Substitution in the Fox Transmitter . 140
9.5 TOY Clock . 140

9.5.1 Clock Characteristics . 140
9.6 Code Generator . 141

9.6.1 WPM Rate Control . 141
9.6.2 Chipping . 141
9.6.3 Chirping . 141
9.6.4 Morse Translation . 142
9.6.5 Interrupt Activity . 144
9.6.6 Timeout Conditions . 145

9.7 Audio . 145
9.7.1 Directory Record . 145
9.7.2 Waveform Data . 145

9.8 Status Reports (commanding) . 146
9.8.1 RDY . 146
9.8.2 STS . 147
9.8.3 sts . 147

9.9 Signon Report . 148
9.9.1 sts01,01: Version . 148
9.9.2 sts01,02: zNEO Hardware . 148
9.9.3 sts01,03: Tools Ver: . 148
9.9.4 sts01,04: Flash Prog (U3) . 148
9.9.5 sts01,05: Flash WAVE (U12) . 148

9.10 Status Report (STAT I command) . 149
9.11 Status Report (STAT command) . 150

9.11.1 Software Bld: . 151
9.11.2 System Time: . 151
9.11.3 Epoch Offset: . 151

vi

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.11.4 TOY Clock: . 152
9.11.5 Sys Upd Flg: . 152
9.11.6 Conf Jumpers: . 152
9.11.7 FRAM Prog U3: . 152
9.11.8 FLASH WAVE U12: . 152
9.11.9 Flash HEX Dev: . 152
9.11.10 Battery, Idle: . 152
9.11.11 Battery, TX: . 153
9.11.12 Analog Others: . 153
9.11.13 UART buffer: . 153
9.11.14 Callsign: . 153
9.11.15 Nickname: . 153
9.11.16 zNEO Port Bits: . 153
9.11.17 Radio Config: . 153
9.11.18 Frequency: . 153
9.11.19 CW config: . 154
9.11.20 State Delays: . 154

9.12 I2C . 154
9.12.1 I2C START . 155
9.12.2 I2C Data . 156
9.12.3 I2C STOP . 157
9.12.4 I2C Write Buffer . 157
9.12.5 I2C Read Buffer . 157

9.13 SPI . 158
9.14 Message Processing . 158
9.15 Frequency Selection . 158

9.15.1 Internal Frequency Tables . 159
9.15.2 Frequency Tables in FRAM . 159
9.15.3 Direct Register Load . 161

10 Commanding 163
10.1 Command Status . 163

10.1.1 sts reports . 164
10.1.2 STS report . 164
10.1.3 RDY report . 164

10.2 Command List . 165
10.2.1 HELP . 168
10.2.2 ONCE . 169
10.2.3 REM- . 170
10.2.4 RUN0 . 170
10.2.5 STAR . 171
10.2.6 IDLE . 172
10.2.7 STAT . 172
10.2.8 CONF . 172
10.2.9 TOYC . 181
10.2.10 TIME . 181
10.2.11 TIRP . 182
10.2.12 D525 . 183
10.2.13 EPOC . 184
10.2.14 CALL . 185
10.2.15 NAME & NICK . 185
10.2.16 TONE . 186

vii

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.17 CWPM . 187
10.2.18 FREQ . 188
10.2.19 FOFF . 189
10.2.20 5351 . 190
10.2.21 BEGN . 193
10.2.22 CODE . 194
10.2.23 TALK . 194
10.2.24 WAIT . 195
10.2.25 CHRP . 196
10.2.26 DONE . 198
10.2.27 BATC . 199
10.2.28 BATV . 201
10.2.29 BATR . 201
10.2.30 MODS . 202
10.2.31 MODC . 203
10.2.32 TALK Filesystem directory commands . 204
10.2.33 ESAV text . 205
10.2.34 EDMP text . 206
10.2.35 EDID . 206
10.2.36 ERAS . 207
10.2.37 EZER . 208
10.2.38 ETAB . 208
10.2.39 HEND . 211
10.2.40 HERA . 211
10.2.41 HDMP . 212
10.2.42 H56K/H115 . 213
10.2.43 :hex . 215
10.2.44 HALT . 217
10.2.45 STOP . 218
10.2.46 TEST . 218

10.3 Sample Sequences . 220
10.3.1 Initialization . 220
10.3.2 TIME . 220
10.3.3 EPOC . 221
10.3.4 CALL/NAME . 221
10.3.5 CONF . 221
10.3.6 MODS . 221
10.3.7 TONE . 221
10.3.8 CWPM . 221
10.3.9 FREQ . 221
10.3.10 STAT . 221

10.4 Announcement . 222
10.4.1 TONE . 222
10.4.2 CWPM . 222
10.4.3 BEGN . 222
10.4.4 BATC . 222
10.4.5 DONE . 222
10.4.6 FREQ . 222
10.4.7 TONE . 223
10.4.8 CWPM . 223
10.4.9 STAT . 223

10.5 Sample Sequences . 223

viii

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.5.1 Schedule 1 Sequence . 223
10.5.2 CWPM . 223
10.5.3 BEGN . 224
10.5.4 WAIT . 224
10.5.5 CODE . 224
10.5.6 DONE . 224

11 Practical Sequencing 225
11.1 Sequences . 225

11.1.1 INI= . 226
11.1.2 TEST= . 226
11.1.3 MAS= . 227
11.1.4 ANN= . 227
11.1.5 ID= . 228
11.1.6 Sequence Fault Recovery . 230
11.1.7 S0= . 231
11.1.8 S0= (102-73161 circuit board) . 231

11.2 Managing Schedules . 232
11.3 Time Synchronization days(s) prior to foxhunt . 233
11.4 Audio Frequency . 233
11.5 Carrier Frequency . 234
11.6 Accessing the USB port . 234
11.7 Accessing the 3.5mm port . 234

12 fox_simple Utilities 235
12.1 fox_simple utility: Command Line Arguments . 235

12.1.1 fox_simple -S <port> . 235
12.1.2 fox_simple -c <delay> . 235
12.1.3 fox_simple -t <time generation> . 236
12.1.4 fox_simple -C <Callsign> . 236
12.1.5 fox_simple -N <Nickname> . 236
12.1.6 fox_simple -Q <freq> . 236
12.1.7 fox_simple -R <schedule> . 236
12.1.8 fox_simple -A <offset> . 237
12.1.9 fox_simple -X <key=value> . 237
12.1.10 fox_simple -f <filename> . 237

12.2 fox_simple utility: Loading Sequence Files . 237
12.3 fox_simple utility: Loading Audio Files . 238
12.4 fox_binary utility: Fast Binary Loader . 239

12.4.1 fox_binary -h . 240
12.4.2 fox_binary -d . 240
12.4.3 fox_binary -F . 240
12.4.4 fox_binary -S <port> . 240
12.4.5 fox_binary -a <file> . 240
12.4.6 fox_binary -f <file> . 241
12.4.7 fox_binary utility: Inserted Records . 241
12.4.8 fox_binary utility: Protocol Details . 244

ix

ICARC FOX Transmitters: 102-73181 KC0JFQ

13 fox_clock Utility 251
13.1 fox clock utility operation . 251

13.1.1 -h . 251
13.1.2 -d . 252
13.1.3 -S USB port . 252
13.1.4 -l transmitter log filename . 252
13.1.5 -m label csv filename . 252

13.2 Normal Use . 252
13.3 Extracted Reports . 253

13.3.1 Handler_TIME . 254
13.3.2 Handler_EPOC . 254
13.3.3 Handler_BATR . 254
13.3.4 Handler_CALL . 254
13.3.5 Handler_NAME . 254
13.3.6 Handler_FREQ . 254
13.3.7 Handler_RUN . 254

13.4 Clock setting shell script . 255
13.5 Reviewing Battery Condition . 255
13.6 Time from GPS NMEA and PPS . 256

14 zNEO Programming Hardware and Utility 257
14.1 Single Channel UART . 259
14.2 ZiLOG eZ8 Programming Adapter . 261
14.3 Four Channel UART . 262

14.3.1 UART 3.5mm Channel Card . 263
14.3.2 UART 3.5mm Isolated Channel Card . 264
14.3.3 ZiLOG eZ8 Programming Channel Card . 265

14.4 FTDIchip EEPROM programming . 265
14.4.1 EEPROM, commands . 266
14.4.2 EEPROM, FOX17.conf . 271
14.4.3 EEPROM, EZ8PGM.conf . 271
14.4.4 EEPROM, prototype . 272
14.4.5 EEPROM, radio 25.conf . 272
14.4.6 EEPROM, . 272

15 Audio File Utility 273
15.1 Input File . 273
15.2 Output File . 273

15.2.1 Audio Utility command line (typical) . 273
15.2.2 Audio Utility command line arguments . 274

15.3 Downloading the audio image . 276
15.3.1 Downloading at 115,200 b/S . 279

15.4 SOX . 279
15.5 Audacity . 280
15.6 cwwav . 280

16 FOX Transmitter Label Utility 281
16.1 fox_label program . 281

16.1.1 fox_label -h . 283
16.1.2 fox_label -A . 283
16.1.3 fox_label -C . 283
16.1.4 fox_label -o . 284

x

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.1.5 fox_label -m . 284
16.1.6 fox_label -d . 284
16.1.7 fox_label -e . 284
16.1.8 fox_label -p . 284
16.1.9 fox_label -P . 284

16.2 fox_label_A_bot . 285
16.3 FOX HUNT Checkin Card . 285
16.4 FOX HUNT Check Sheet . 286
16.5 fox_label_A_top . 287
16.6 fox_label_C_FOX*, Serialized Finder Card . 287
16.7 fox_label_B_cards; Tx Found Log Card . 288
16.8 fox_label_B_quick_cards; Quick Found Log Card 289
16.9 fox_label.csv . 290

16.9.1 fox_label.csv; First Line . 290
16.9.2 fox_label.csv; Column 1 . 290
16.9.3 fox_label.csv; Column 2 . 291
16.9.4 fox_label.csv; Column 3 . 291
16.9.5 fox_label.csv; Column 4 . 291
16.9.6 fox_label.csv; Column 5 . 291
16.9.7 fox_label.csv; Column 6 . 291
16.9.8 fox_label.csv; Column 7 . 291
16.9.9 fox_label.csv; Column 8 . 291
16.9.10 fox_label.csv; Column 9 . 291
16.9.11 fox_label.csv; Column 10 . 292
16.9.12 fox_label.csv; Column 11 . 292
16.9.13 fox_label.csv; Column 12 . 292
16.9.14 fox_label.csv; Column 13 . 292
16.9.15 fox_label.csv; Column 14 . 292
16.9.16 fox_label.csv; Column 15 . 293
16.9.17 fox_label.csv; Column 16 . 293
16.9.18 fox_label.csv; Column 17&18 . 293

17 Synthesizer configuration utilities 295
17.1 SI5351 configuration table utility . 295

17.1.1 Frequency Tuning . 297
17.1.2 Synthesis Divisor calculation method TWO 297

17.2 ICS307 . 307
17.3 ICS525 . 307

18 Assorted Interesting Topics 309
18.1 102-73161-12 Transmitter Configuration . 309

18.1.1 102-73161-12 Transmitter Configuration, Low Power 309
18.1.2 102-73161-12 MAX2602 . 309
18.1.3 Transmitter Configuration, MMIC . 309
18.1.4 Transmitter Configuration, MMIC . 310
18.1.5 102-73161-12 Amplifier Patch Board, NPN in SOT23 package 310

18.2 102-73161-12 Frequency Selection . 310
18.3 102-73161-25 Frequency Selection . 310
18.4 Garbled Audio . 310

18.4.1 Missing Load (Empty FLASH) . 310
18.4.2 Overwritten RIFF/WAVE Headers . 311
18.4.3 Overwritten Waveform Data . 311

xi

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.4.4 Mismatched TALK= Directory . 311
18.5 Corrupt Sequences . 311
18.6 Lost Sequences . 311
18.7 Notes on the use of the Network Port . 312
18.8 Prosigns . 312
18.9 Code Speed of the ID message . 312
18.10External Transmitter Control . 312
18.11External Transmitter Serial Control . 313
18.12Controlling Deviation . 313
18.13Battery Check . 313
18.14Alternate Battery Configurations . 314

18.14.1 Higher Voltage Packs . 315
18.15Universal Setup Pitfalls . 315
18.16Nulla malesuada . 315

19 Actual FOX configuration commands 317
19.1 FOX2X_KC0JFQ setup scripts . 317

19.1.1 FOX2X_KC0JFQ.fox . 318
19.1.2 FOX2X_KC0JFQ TALK Directory Include 320
19.1.3 FOX2X_KC0JFQ INI= . 321
19.1.4 FOX2X_KC0JFQ TEST sequence . 323
19.1.5 FOX2X_KC0JFQ MAS sequence . 323
19.1.6 FOX2X_KC0JFQ ANN= . 324
19.1.7 FOX2X_KC0JFQ sequence includes . 326

19.2 TALK Directory file . 327
19.3 FOX Frequency Table . 331
19.4 FOX Frequency Table . 333
19.5 FOX2X_S0 Message . 334
19.6 FOX2X_S1 Message . 336
19.7 FOX2X_S2 Message . 337
19.8 FOX2X_S3 Message . 338
19.9 FOX2X_S4 Message . 339
19.10FOX2X_S5 Message . 340
19.11FOX2X_S6 Message . 341
19.12FOX2X_S7 Message . 343
19.13FOX2X_S8 and FOX2X_S9 . 344
19.14S_MOxx.fox and S_sprint.fox . 347

19.14.1 S_MOxx.fox . 347
19.14.2 S_sprint.fox . 348

19.15fox20.sh . 349
19.15.1 fox20.sh FOX5 . 350
19.15.2 fox20.sh FOX20 . 351
19.15.3 fox20.sh FOX21 . 352
19.15.4 fox20.sh FOX27 . 353
19.15.5 fox20.sh fox_simple . 354

19.16ONCE Testing . 355
19.17ICARC Fox Hunt Configuration . 356

19.17.1 ICARC S0= Sequence . 357
19.17.2 ICARC S1= Sequence . 357
19.17.3 ICARC S6= Sequence . 358

19.18FOX21_KC0JFQ.log . 359

xii

ICARC FOX Transmitters: 102-73181 KC0JFQ

20 Sample Output 365
20.1 Sample HELP . 365
20.2 Sample STAT . 366
20.3 ICS525 20MHz Frequency Table . 367

21 Power Worksheets 369
21.1 FOX6 . 369
21.2 FOX22 . 369
21.3 FOX27 . 369
21.4 FOX29 . 370
21.5 FOX32 . 370

22 Configuration Worksheets 373

23 Informal Fox Hunt Procedures and Rules 383
23.1 Prior to the Hunt . 383

23.1.1 Transmitter Time Update . 383
23.1.2 Labels . 384

23.2 Receiver Preparation . 385
23.3 Transmitter Preparation . 385
23.4 Transmitter Deposit . 386
23.5 Participant Signin . 386
23.6 Active Hunt . 386
23.7 Hunt Completion . 386
23.8 Hunt Teardown . 387
23.9 Awards Ceremony . 387
23.10Hunt Rules . 388

23.10.1 Observe Venue Rules . 388
23.10.2 Equipment . 388
23.10.3 Checkin . 389
23.10.4 Transmitters . 389
23.10.5 Hunt Groups . 389
23.10.6 Team Hunt . 389

xiii

ICARC FOX Transmitters: 102-73181 KC0JFQ

xiv

List of Figures

4.1 3rd. generation transmitter (102-73181-10) . 23
4.2 Block Diagram . 24
4.3 SI5351 Output Filter Schematic . 33
4.4 Output Filter Table . 33
4.5 160MHz LPF Filter Response . 34
4.6 VNA Filter Response . 34
4.7 TinySA Spectrum . 35
4.8 TinySA Spectrum 2 . 35
4.9 TinySA Spectrum 3 . 36
4.10 74MHz LPF Filter Response . 36
4.11 SI5351 Schematic . 38
4.12 DRA818 Daughter board Schematic . 39
4.13 DRA818 Daughter board . 40
4.14 ICS525 Schematic . 41
4.15 Transmit Timing . 42
4.16 SI5351 Synthesizer Block Diagram . 45
4.17 SI5351 Synthesizer VCO Selection . 47
4.18 SI5351 Synthesizer Register Calculation D . 47
4.19 SI5351 Synthesizer Register Calculation E . 47
4.20 SI5351 Synthesizer Register Calculation F . 48
4.21 DS1672 Charge Control . 53
4.22 Deviation . 56
4.23 External Connection . 57
4.24 VCMO_TONE . 57
4.25 PWMH0 . 58
4.26 Power Plot . 61
4.27 R68 . 63
4.28 TTL-232R-3V3-AJ . 64
4.29 TTL-232R-3V3-AJ Pinout . 64
4.30 Amplifier Bypass Schematic . 76
4.31 Class-C Amplifier Schematic . 77
4.32 LVDS Amplifier Schematic . 78
4.33 LVDS Amplifier . 79
4.34 Class C amplifier using ADL5536 or similar. 80
4.35 73161-28 MMIC Amplifier Board . 81
4.36 MMIC CHiRP Amplifier Schematic . 82
4.37 MMIC Amplifier Board . 84
4.38 Matching network values 50Ω . 85
4.39 Matching network values 75Ω . 85
4.40 Cascaded MMIC Amplifiers . 87

xv

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.41 HI Power CHiRP . 88
4.42 HI Power Bipolar, Sheet 1 . 89
4.43 HI Power Bipolar, Sheet 2 . 90
4.44 HI Power Bipolar CHiRP (102-73181-85) . 91
4.45 HF Amplifier and LPF . 92

7.1 Charge Circuit . 128
7.2 Regulated Charge Circuit . 128

9.1 I2C START . 155
9.2 I2C Data . 156
9.3 I2C STOP . 157

10.1 BMON values (keyword in RED) . 177

12.1 Binary Protocol . 244

14.1 Single Channel UART . 259
14.2 base board to programming board . 260
14.3 eZ8 Adapter . 261
14.4 FTDIchip FT4232 . 262
14.5 FTDIchip FT4232 channel . 263
14.6 3.5mm serial channel . 263
14.7 3.5mm serial channel, isolated . 264
14.8 Isolated 5V supply . 264
14.9 eZ8 Programming Card . 265

16.1 FOX Transmitter BOT Labels . 285
16.2 FOX HUNT Checkin Card . 285
16.3 FOX HUNT Check Sheet . 286
16.4 FOX Transmitter TOP Labels . 287
16.5 FOX Transmitter Found Cards . 287
16.6 FOX HUNT Capture Card . 288
16.7 FOX HUNT Quick Found Card . 289

22.1 Worksheet, 10 minute cycle . 373
22.2 Worksheet, 15 minute cycle . 374
22.3 Worksheet, 5 minute cycle . 375
22.4 Conversation, 5 or 6 minute cycle . 376
22.5 Conversation, FOX21/FOX22 . 377
22.6 CHiRP, FOX21..FOX26 . 378
22.7 Worksheet, preparation checklist . 380

xvi

List of Tables

4.1 InTel HEX record . 50
4.2 InTel HEX record Types . 51
4.3 DS1672 Register Map . 52
4.4 J6 pinout and Function Table . 65

5.1 Jumpers . 98
5.2 MAS/TEST Jumpers . 99
5.3 Resistor Selection . 100
5.4 J6 housing reference . 115

8.1 Battery Condition Voice Clips . 133
8.2 Frequency Announce Clips . 134
8.3 Station Announce Clips . 134
8.4 Silly Voice Clips . 135

9.1 Scheduling Example 1 . 139
9.2 Scheduling Example 2 . 140

10.1 Command List 1 . 165
10.2 Command List 2 . 165
10.3 Command List 3 . 166
10.4 Command List 4 . 166
10.5 Command List 5 . 167
10.6 Command List 6 . 167
10.7 Command List 7 . 167
10.8 Command List 8 . 168
10.9 Help Subsystem . 168
10.10Run a sequence ONCE . 169
10.11Remark . 170
10.12Scheduling Control . 170
10.13Start Scheduling . 171
10.14Idle . 172
10.15System Status . 172
10.16Hardware Configuration . 172
10.17Hardware Configuration Flags . 174
10.18TOY Clock Charge . 181
10.19Time management command . 181
10.20Time reporting command . 182
10.21ICS525 management command . 183
10.22Time management command 3 . 184
10.23Setup Callsign . 185

xvii

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.24Setup Nickname . 185
10.25CW Tone Control . 186
10.26CW chipping rate control . 187
10.27Chipping Parameters . 187
10.28Transmit carrier frequency control . 188
10.29Transmit carrier frequency offset . 189
10.30SI5351 Control . 190
10.31SI5351 Register Parameters . 190
10.32Begin Message Traffic . 193
10.33Generate Morse Code . 194
10.34Generate Audio . 194
10.35Simple Wait . 195
10.36Chirp Emulator . 196
10.37Done with message traffic . 198
10.38Battery Report CODE . 199
10.39BATC Modifiers . 199
10.40BATC Keywords . 199
10.41Battery Report VOICE . 201
10.42Battery Report Text . 201
10.43Scheduling control, MOD . 202
10.44Typical Schedule . 203
10.45Schedule clear . 203
10.46TALK Filesystem directory . 204
10.47FRAM control ESAV . 205
10.48FRAM control EDMP . 206
10.49FRAM control EDID . 206
10.50FRAM control ERAS . 207
10.51FRAM control EZER . 208
10.52FRAM/FLASH table dump . 208
10.53FRAM/FLASH device Table . 209
10.54FLASH control HEND . 211
10.55FLASH control HERA . 211
10.56FLASH control HDMP . 212
10.57H115/H56K . 213
10.58InTel HEX Record Load . 215
10.59HALT Instruction . 217
10.60STOP Instruction . 218
10.61Test Suite . 218
10.62Test Suite Tests . 219
10.63Sample Sequence 1 . 220
10.64Sample Sequence 3 . 222
10.65Sample Sequence 4 . 223

16.1 fox_label output files . 281

18.1 CONN PWR JACK 2.5X5.5MM SOLDER . 314

21.1 FOX6/102-73161-25 . 369
21.2 FOX22/102-73181-10 . 369
21.3 FOX27/102-73181-10 . 370
21.4 FOX27/102-73181-AMPS . 370
21.5 FOX29/102-73181-10 . 370

xviii

ICARC FOX Transmitters: 102-73181 KC0JFQ

21.6 FOX32/102-73181-10 . 370

xix

ICARC FOX Transmitters: 102-73181 KC0JFQ

xx

Chapter 1

Glossary of Terms

There is an attempt being made to use some terms in this document in a precise manner. Some
of the discussions become a bit muddled when terms are used casually.

1.1 Chirp

A transmission method (not a RADAR chirp) where the transmitter enables carrier for a short
period, in effect emulating a wildlife tracker.

1.2 Chip & Chipping

The word Chip refers to the smallest unit of CW activity managed by the transmitter.
A dit, being the smallest CW unit, takes one chirp time to send.
We use Chiping when talking about the assembly and delivery of a CW message that is built on
a list of chips.

1.3 FLASH

An in-circuit erasable and programmable memory.

A type of non-volatile memory that exhibits very asymmetric access speed. Write speed is several
orders of magnitude slower that read speed.
Update is handled by erasing the entire device and then loading it one (32 byte) record at a time.

1.4 FRAM

Ferro Magnetic Randomn Access Memory.

A type of non-volatile memory that exhibits symmetric access speed. In other words the write
speed is the same as the read speed. The type of memory is byte accessible (for both read and
write) as well as non-volatile.
Update may be handled a record at a time or by erasing the entire device.

1

ICARC FOX Transmitters: 102-73181 KC0JFQ

1.5 ISR
Interrupt Service Routine.
This is a block of code that deals with an even that is not triggered by the normal flow of in-
structions in the processor.
Examples would be incoming serial traffic or a timer event.

1.6 MMIC

Monolithic Microwave Integrated Circuit.
Amplifier on a chip that makes life simple at VHF frequencies.

1.7 Processor

This refers to the zNEO system-on-chip. It has an instruction execution engine (i.e. the CPU),
program memory, data memory, and a variety of peripherals.

1.8 Program

This refers to the code in the zNEO system-on-chip.

1.9 Sequence

We will use the term SEQUENCE in this document to describe a set of (FRAM) instructions
that are executed as a group.

Typically this sequence is stored in external FRAM memory.

1.10 TOY Clock

Time-of-Year clock. A battery backed clock that keeps time when the transmitter is not powered.

1.11 xxx

xxx (the 24th. letter of the alphabet)

2

Chapter 2

Motivation

Why all the improvements?
Because we can! And because if FUN! (Parts availability forced the 102-73181-10 update this
time around).

Most of the shortcomings of the 102-73161 series boards are addressed in this revision, at least all
the known shortcomings. The clock synthesizers used in the earlier 102-73161 boards are all at
end-of-life and will become more difficult (i.e. impossible) to obtain. Moving to a newer synthe-
sizer hopes to extend the useful life of the design.
In addition, there are some additional control signals presented to the RF daughter board to al-
low the use of an integrated transceiver module. This transceiver module entirely bypasses the
clock synthesizer, allowing operation in the UHF band.

2.1 Requirements
These are required for operation and remain unchanged from the 102-73161 series boards.

2.1.1 2M Band
We are using 2M handheld transceivers as a primary detector.
We must stay within our licensed band.

This requirement/responsibility may be imposed on the hunt operator.
Transmitter must be able to supply a signal that can be decoded by a normal handheld
transceiver.

This implies code or voice.

2.1.2 Multiple frequency
We must be able to (conveniently) operate the transmitter on more than one frequency.

The SI5351 provides operation throughout the 2M band.

3

ICARC FOX Transmitters: 102-73181 KC0JFQ

2.1.3 Battery Operation
We must be able to carry multiple FOX Transmitters, so battery weight may be an issue. Target
is a 9V battery or a 6-cell pack.
Using a switch-mode regulator allows for the use of a much wider range of battery packs without
sacrificing conversion efficiency. The battery pack may be anywhere from about 6 1/2 to 7 volts
all the way up to 24 volts.
The use of a low power RF power amplifier extends battery live.

A 100mW output level will provide coverage adequate for an area such as a city or county
park.

2.1.4 Code Storage
We must store enough bits to identify the transmitter.

An external serial memory dievice.

We would also like to have enough storage for the message traffic to change during the hunt.
This same external memory device.

2.1.5 Physical Size
The housing in which the transmitter lives must be a manageable size.

Too small, and it’s hard to find. We need to set out flags or something similar to make the
device such that it can physically be seen.
Too large, and it’s hard to transport. It shouldn’t be so large that you can’t carry a full
hunt group (5 to 10 units) during setup and teardown.

2.1.6 Programmable without special tools
It is essential that the end user is able to load the operating instructions (FRAM) as well as the
audio waveforms (FLASH) without the need for special tools.

Serial access allowing a simple terminal program to be used to load the memory devices. A
simple control program can be made to automate this task.
We may also implement a fast binary loader that operates through this serial channel to
spped up loading operatons.

4

ICARC FOX Transmitters: 102-73181 KC0JFQ

2.2 Desirements
These are desired features

2.2.1 Dynamic frequency
We would like to be able to easily change frequencies during operation.

As a convenience for the hunt organizer, we want to have the transmitter emit a well-
ness/alive message on a common frequency when powered on.
The transmitter will then switch to its assigned operating frequency for the hunt.

This capability leaves the door open to some very devious operating possibilities.

2.2.2 Multiple band
We would like to be able to operate the transmitter on more than one band. It is probably unrea-
sonable to be able to do this without changes to the output filter unless the filter is moved to the
amplifier daughter card.
Implementation:

ICS525 (or ICS307 on the 73181-0 board) clock synthesizer controlled by the zNEO proces-
sor. Any frequency that can be generated by the ICS525 (or ICS307) given its clock input
may be selected. ICS307 clock synthesizer controlled by the Raspberry PI-Zero. Control
bits are supplied through a serial interface, so programming the control word is mandatory
with this synthesizer.
The 102-73181-5 and later boards use a Skyworks SI5351 synthesizer, similar to the
ICS307, to operate up into the 2M band.
The 102-73181-10 and later boards provide for operating with an RF module eliminating
the SI5351 altogether. This opens up the possibility of operating in the UHF band.
The 102-73181-5 and 102-73181-10 boards both can operate in the 6M band. The SI5351 is
easily programmed to generate carrier in the frequency range.

We may also employ an RF module on a daughterboard to cover the UHF band (i.e.
SA818/DRA818).

2.2.3 Operation on 80M
We would really enjoy being able to operate on the 80M band. This allows conducting an IARU
event.

Can we pull this off without having to alter a Fox Transmitter that is also used on the 2M
band?

It looks like we can fit a simple HF amplifier with a low pass filter on an RF daughtercard.
See the details in section 4.17.8 on page 92.
Although aimed at the SI5351, the ICS525 should be able to hit some frequencies in the
80M band.

5

ICARC FOX Transmitters: 102-73181 KC0JFQ

2.2.4 Large CW tables
We get bored with the same old message over and over.
We would also like to be able to operate at any word rate.
Implementation:
Message traffic stored in FRAM, which may be as small as 64Kb (8KB).

A 64Kb device holds 256 command/directory records.
A 256Kb device holds 1024 command/directory records and is under $5.00.

Most of this memory can be used to store message traffic.
Larger devices, of course, increase the size of the message traffic that may be stored.
CW chipping rate can be selected from 1-WPM to 50-WPM.
The Raspberry PI-Zero made use of a micro-SD card, so storage space was not an issue for that
hardware.
The 102-73181 board adds a second serial FLASH position for storing waveform data.

2.2.5 Voice Storage
We must provide sufficient external storage for waveform data. Something on the order of 60 sec-
onds of voice data sampled at a 4KHz of 5KHz rate.

In the 102-73181 design, as noted above in section 2.2.4, a separate storage device is used
to store audio data. This separate device is a large low cost flash device. The downside
of the flash device is the added complexity of managing the additional time required to
program each page in the device. Erasure must occur on a sector basis or the entire device
can be cleared in one operation.

Support for the 102-73161-25 design includes the capability to store both audio waveforms and
commands.

2.2.6 Easy Synchronization
There should be a method of synchronizing multiple transmitters.
This is not to imply that the transmitters must be in contact with each other.
Implementation:

The transmitters are synchronized a day or two prior to the event through the command
port.
The network path is deprecated in the V3 and later software as it was never used in the
field.

2.2.7 Long Battery Life
This is to say we should be able to operate for the entire length of the fox hunt without having to
replace batteries.
Implementation:

The case has room for a 6 cell AAA battery pack. This should allow for 12 to 24 hours of
operation of the zNEO based transmitters.

6

ICARC FOX Transmitters: 102-73181 KC0JFQ

2.2.8 Large memory footprints
A large program flash in the zNEO allows the implementation of a comprehensive control lan-
guage.
A large FRAM allowing for the storage of audio waveform data. Large devices open the door to
having a verbal hunt where message traffic doesn’t repeat.

2.3 Scheduling Philosophy
Throughout the software there has been an effort to be disciplined in how the schedules (at sev-
eral levels) are implemented.
The scheduling method is descripbed in section 9.1 on page 137.
This now (as of V3.75) extends down to the way timing is controlled when emulating a wildlife
tracker.
The general scheduling is synchronous with the TOY clock (through the use of modular arith-
metic) to allow multiple units to operate using the same frequency without stepping on top of
each other.

2.4 Fast Loading
One very late arriving goal was to be able to load the FLASH memory in a reasonable time.
There was never a seperate InTel HEX loader utility, rather we were using the fox_simple util-
ity (see section 12 on page 235) to pass a HEX file through to the target system. The fox_simple
utility runs open-loop and simply uses a fixed delay between lines of text sent to the targeet.
Loading a waveform image that holds several hundred kilobytes of image data is slow, at best.

There was a growing desire to improve the situation as audio file loading was becoming a long
drawn-out affair. A proposed binary protocol was implemented to reduce the communications
bandwidth requirements and operate closed loop to minimize dead time.
See discussion of the fox_binary utility , in section 12 on page 235, for a discussion and descrip-
tion of how this works.

7

ICARC FOX Transmitters: 102-73181 KC0JFQ

8

Chapter 3

Revision History

List of updates to the hardware and software.

3.1 Software
Updates and changes to the Operating Software

3.1.1 V4.11
Looking at the older boards, an EEPROM device looks to be an attractive way ($$$) to provide
a large audio file system.
So three ST Micro devices, from 8Mb to 32Mb, have been added to the memory device table.
We also add a marker for EEPROM that tells the system to treat it the same as a FLASH de-
vice. It should handle an overwrite just like FRAM...

3.1.2 V4.10
Eliminate almost all frequency limits checking. This feature is mostly meaningless as you should
be placing only valid frequency settings in the external table.
This should make working with the 102-73227-11 RF amp a bit easier. This is an HF amplifier
with provisions to accommodate the ICS525 frequency synthesizer that operates above 30MHz.
The 102-73227-11 RF amp has a divide by 16 between the synthesizer and the RF amplifier.
Eliminate almost all internal frequency tables.
The SI5351 table has only 144.100 MHz to allow a quick characterization.
The ICS525 has all frequency entries externalized. This means this version is compatible with all
hardware versions!

3.1.3 V4.09
Start of support for 80M RF daughterboard amplifier.
Change ICS525 support to require external frequency table. This may still fit in both hardware
revisions to allow for a single load image for all!
Some of the D525 sub-commands eliminated, specifically there is no ICS525 setup table to
dump.

9

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.4 V4.08
ARRGH!!!
All this time the <CALL> and <NAME> substitutions were not implemented for the code
generator.
Also added an alias of <NICK> to more closely match the command verbs.

You will need to be up at this revision to run and IARU sequences that don’t talk...

3.1.5 V4.07
Update cmd_frequency.c to allow selections in the FM broadcast band.
This requires an entry in the external frequency table. You will also have to measure the carrier
frequency and adjust the SI5351 register values as needed.

3.1.6 V4.06
Add the TIRP command to vebalize system seconds. Allows you to see how close to correct time
the fox transmitter clock is running using only a radio.
This adds a need for two new utterance entries: V_SEC and V_TIRP. The first should say "sec-
onds" and the second should say "time sync".
Removed an instruction in the block loader ISR.
Extra status read is out (removed).
Three logical timer channels have been removed (reduce RTI ISR overhead)).

3.1.7 V4.05(not working!)
Pushing to shrink the ISR’s as much as possible.
Managed to remove a couple of lines in the UART ISR...
An unused status register read, and a couple of places that force a zero into the input buffer after
saving the current character. Not necessary for the binary mode.
Also reduce the path length in the timer ISR.
Remove three logical timer channels that were unused and being checked in the timer ISR.
It looks like the timer and UART times combined are less than one character time at 115,200.
Can’t shut the RTI timer off as it’s used in the binary loader to imiplement delays when the pro-
tocol is active.
Running at 230,400 might be possible if it weren’t for the RTI interrupt. The UART in the
zNEO is not buffered (I miss the SIO/SCC from Z80 days), so we can’t deal with any higher
data rates unless we fire up the DMA controller.

10

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.8 V4.04
ARRGH!
Handling of CONF CW and CONF FM was a little off. It should return to continuous carrier
after we send CONF FM.
SO, in cmd_voice and cmd_code always enable the TX_ENA net before sending. The code
then tests the TX_ENA_MASK bit in the configuration flags to shut down the TX_ENA net
after.
Note that CONF CW will operate in what sounds like full break-in mode where carrier is off
between dit/dah.
The CONF FM command does not directly manipulate the TX_ENA net, so we have to have
voice or code traffic to transition into that mode.
You must also have the 102-73181-28 or the 102-73181-71 RF amplifier installed for this to work
correctly!

Added several 8M, 16M and 32M devices from BYTe Semiconductor and Renesas. Trying to get
the FLASH table generously populated with narrow package devices (look for 0.154" wide pack-
age)
Note that both FLASH_NVRAM and FLASH_AAI have been deprecated. The SPI han-
dler no longer recgonizes them.

A later addition to V4.04 improves performance of the UART ISR slightly. This is to allow oper-
ation at 115,200 b/S to slightly improve load times.
The ISR now checks the UART1 status register near the end of processing and reads a 2nd. char-
acter if it is available. This aims to reduce or eliminate overrun errors where there is only 85 to
95 between characters.
Some of the debug code has also been removed from the ISR to further reduce path length.

3.1.9 V4.03
Was (all of a sudden) having problems with ONCE command. Add line to strip off all trailing
space and control characters.

3.1.10 V4.02
Count up NAK sent out as well as record count. Pass it back in the status report at end of activ-
ity.
Also noticed that AAI (Auto Address Increment) FLASH devices don’t work right, so removed 3
AAI entries from the device table. These devices are deprecated.
If they appear on a board, they will need to be replaced!

3.1.11 V4.01
Arrgh! We should be able to do this for both external memory devices. And now we can.
Change the B modifier to PROG and WAVE. The modifier causes the switch to binary mode
and selects the target device.

11

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.12 V4.00
A rather major upgrade to drastically improve the speed with which we can load waveforms into
FLASH memory.
Modify both H115 and H56K commands to invoke the binary load protocol by adding a B
modifier.

3.1.13 V3.95
A bit more tidy-ing up...
Add CONF XTAL nn.nn to better document when we’re running the SI5351 with a non-
standard crystal.
In the 102-73181-10 world, the more-or-less standard crystal is 20.0MHz, the same one used by
the zNEO (to minimize unique parts).

3.1.14 V3.94
No chance to keep CW and -AM straight, so add decode for CONF FM to make command se-
quences a bit clearer.
This decodes a bit funny

3.1.15 V3.93
Changed the bit rate divisor for 115200 operation. Prior revisions probably won’t have a working
H115 command.

3.1.16 V3.92
Changed the limits for 2M, 6M, 10M, and 20M operation. Added limits for 70cM (SA818U)

• 70cM 432.00MHz to 435.00MHz

• 2M 144.090MHz to 147.990MHz

• 6M 50.010MHz to 53.950MHz

• 10M 28.150MHz to 28.300MHz

• 20M 14.095MHz to 14.230MHz

No practical effect on existing units.

3.1.17 V3.91
Add "I" flag to BATR command to dump coefficients table.

3.1.18 V3.90
Add timetag to BATR command so we don’t depend on external timetag function.
This just pulls the currrent time and dumps it in the BATR report.

12

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.19 V3.89
No functional changes.
Cleaned up some text reports (eliminate redundant text).

3.1.20 V3.88
Thought there was a problem in the STAR command...
There wasn’t but did notice that the time field needs to be complete (i.e. HH:MM:SS).
Rearranged the reporting line in the STAT command.

3.1.21 V3.87
Add battery voltage limit test to the BATV command. It operates just like the BATC com-
mand, sending out SOS SOS in code following the voltage vebalization.

3.1.22 V3.86
Move the "TALK " test from cmd_message to cmd_voice.
No change to the way things operate.

3.1.23 V3.85
Ran into to peculier operation when embeding REM- in a sequence so updated the cmd_help
module to clear the first character after the REM- to zero to stop further processing on the line.

3.1.24 V3.84
Alter the CHRP command to process TALK files.
CHRP FILE period offset delay count.

3.1.25 V3.82
Alter the way the the ERAS and ESAV commands deal with record erase.
Erase record (ERAS block-number) rewrites the record with the text string MT**. Save record
(ESAV text-to-save) will overwrite an empty record or thge MT** record.
You will see the MT** record when dumping (EDMP).
Makes sanity checking a bit easier.

3.1.26 V3.81
Add the schedule name to the RUN0 status report.
A bit of a sanity check when looking at command traffic during sequenct development and debug-
ging.

13

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.27 V3.80
Add synchronous feature to WAIT command.
You can giv a period/pffset style of argument to WAIT to invoke synchronous scheduling.

We also update EZER and ERAS to accept a range of record numbers to get rid of a group all-
in-one command.

3.1.28 V3.77
Add a frequency parameter to the BEGN SILENT command to enable the tone generator at
the specified frequency.
This addition is to aid in filter performance analysis.

The SI5351 frequency test table is also updated in this version. The table has entries at 500KHz
intervals from 144.100 to 147.500 to allow testing across the entire band.

3.1.29 V3.76
Update the TIME command so that a time set operation is synchronous.
When using a TIME command with no arguments (to set the system time from the TOY clock),
the TOY clock is read until the LSB changes. This gets the fox transmitter system time to
within 10mSec of the TOY clock.

3.1.30 V3.75
Fox_73181_3.75_2024-11-03T11.tar.gz

Modify the CHRP command to operate synchronously.
See the command reference table 10.36 on page 196.
Backed out the V3.74 change to send nickname, it seems to overflow a data buffer.

The command.c module holds the help text. Early V3.75 release do not have the updated help
text. Version 3.22 of the command.c module has update help text string.
No change to code (hence no change to V3.75 string).

3.1.31 V3.74
Fox_73181_3.74_2024-11-01T15.tar.gz

The BEGN command now sends the nickname as part of the signon CW traffic.

3.1.32 V3.73
Fox_73181_3.73_2024-08-19T15.tar.gz

Add the BATR command to track battery voltage.
Use this in the sequence to leave a set of battery readings for later battery capacity analysis.
This command was added to produce the plots in section 4.10.2 on page 61.

14

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.33 V3.72
Fox_73181_3.72_2024-07-09T10.tar.gz

Add the FOFF command to track the offset we have applied to the frequency setup table.

3.1.34 V3.71
Fox_73181_3.71_2024-07-08T12.tar.gz

Change default frequency table for SI5351 to 0KHz and leave it that.
User then has to measure the offset and load an external frequency table.
This way the base image for the zNEO is identical on all units.

3.1.35 V3.70
Fox_73181_3.70_2024-06-16T19.tar.gz

Change default cap on the reference crystal to 8pF. User can move up or down from there if
needed. Also change the internal frequency table.
The cmd_stat.c module didn’t quite get the changes to the SI5351_clk_ena_bits field right.
Copied decode for this field from the cmd_conf.c module.

3.1.36 V3.69
Fox_73181_3.69_2024-06-11T15.tar.gz

Changed control terminal bit rate to 57,600. Don’t really see any reason not to run at that rate
all the time.
Removed H56K and replaced it with H115.

3.1.37 V3.68
Fox_73181_3.68_2024-06-11T15.tar.gz

Added the nPF sub-commands to the CONF command.
Now we might revisit the frequency offset used in the SI5351 register configuration utility and
change the default load capacitance...

3.1.38 V3.67
Fox_73181_3.67_2024-06-10T14.tar.gz

The HERA command deals with block erase now.
See command description table, figure 10.55 on page 211.

3.1.39 V3.66
Fox_73181_3.66_2024-06-10T12.tar.gz

The STAR command (start scheduling after specified time) appears to work now.
There is a common time compare routine used by the scheduler and the STAT command.
See command description table, figure 10.13 on page 171.

15

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.40 V3.65
Fox_73181_3.65_2024-05-28T08.tar.gz

Add the CONF AM/CONF CW configuration bit.
This sets the transmitter to operate in an interrupted carrier mode of operatioon.
See command description table, figure 10.16 on page 172.

3.1.41 V3.64
Fox_73181_3.64_2024-05-24T10.tar.gz

Changed the default T2 time in cmd_conf.c from 50mS to 150mS. This should give the RF gen-
erator time to start before the CW signon message starts .

3.1.42 V3.63
Fox_73181_3.63_2024-05-22T19.tar.gz

Fixed processing of RUN0 argument.
Should match sequence name, not use the number as an index into the schedule table which may
be sparsely populated.
This revision is more-or-less required for correct operation with a sparsely populated scheduleing
table.

3.1.43 V3.62
Fox_73181_3.62_2024-05-09T16.tar.gz

Corrected a series of bugs caused by adding 32 bit support to the flash handler. Seems stable
dealing with 256Mbit (and larger) flash devices. The address field increases to 32 bits (affecting
read and write commands.
I also ran into long erase times while debugging the 32 bit support for the Macronix
MX25L256. There isn’t any special handling of a flash erase operation, you enter the HERA
ALL command, it send the chip erase, and we’re ready for the next command. The MX25L256
on the other hand, is loafing along performing the chip erase and it won’t talk to us while it’s
erasing. The chip looks like it’s royally borked until the erase has completed.
All we do to deal with this is let the user know it’s going to take a while. The flash commands
test the ready bit in the status register and abort with a BUSY message to indicate the flash
device is off doing something else.

3.1.44 V3.59
Fox_73181_3.59_2024-04-05T15.tar.gz

Well, we finally discovered that big FLASH devices require a 32 bit address. Add 32 bit address
support to the flash routines.
We also encounter a loooooong erase time where the flash device will not respond to anything
other than a RDSR request to read the status register (and return a busy indicator).
We now detect a busy flash and report it after aborting the command request.

A late addition to InTel_hex.c is a console break test into the dump loop. Bang on the enter key
to break out of the loop (which can go on forever with a large audio set).

16

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.45 V3.57

Add a dummy modules for the ICS525.

We don’t need this block of code with the 102-73181 boards, so make a dummy module so it
will link correctly...

3.1.46 V3.56
Fox_73181_3.56_2024-04-09T18.tar.gz

Remove MODW command and implement the MODC command.
The schedule state variable now has three operating states:

Idle
Schedule is loaded and ready to run, but is not currently scheduling.

Active
Schedule is loaded and is currently scheduling.

Clear
Schedule remains loaded and ready to run, but has been halted/stopped by the MODC
command.

And a fault state where the state variable value is invalid.
Updated the CHRP command parameter handling.
CHRP <audio tone> <period> <duration> <repeat count>

3.1.47 V3.54
Fox_73181_3.54_2024-03-29T19.tar.gz

Rework the way the TEST and MAS jumpers are handled.
Always run INI= script (keeping callsign, nickname, and radio configuration commands in one
place).
Both jumpers allow the system to recover from a bad command load. It suppressses all FRAM
commands.
A minor revision was applied to the cmd_message.c module marked as V1.04 that adds a second
delta in the BEGN-DONE calculation. When the T1 delay exceeds 100 mS, 1 secondary delta
time is displayed by the DONE command (this shows only the carrier-on time).

3.1.48 V3.53
Fox_73181_3.53_2024-03-22T12.tar.gz

Changes to BEGN, DONE, and WAIT to allowing the transmitrer for things other than fox hunt-
ing.

3.1.49 V3.52
Fox_73181_3.52_2024-03-21T18.tar.gz

Add sample rates to audio driver:
10K s/s and 16K s/s.
Useful in some non-FOX applications.

17

ICARC FOX Transmitters: 102-73181 KC0JFQ

Add H56K command to speed up hex downloads...

3.1.50 V3.51
Fox_73181_3.51_2024-03-21T16.tar.gz

Rework of the ICS525 handler to correctly take register patterns from the frequency table in
FRAM.

3.1.51 V3.50
Fox_73181_3.50_2024-03-20T14.tar.gz

Update to implement the CHRP command.
Emulate a wildlife tracker.

3.1.52 V3.31
Fox_73181_3.31_2024-03-12T20.tar.gz

Update that get waveform in FRAM sorted out.
This should make the 102-73161-25 units fully functional with the version3 software (at least, I
hope it does).

3.1.53 V3.28
Fox_73181_3.28_2024-03-06T20.tar.gz

Fix ICS525 table dump.
Successfully tested on 102-73161-25 hardware.

Also updated in this build, in the V3.05 flash_local.c module (Mar 5 2024 16:15:39), are a
couple of updates to the FLASH tables (device_table.c) adding two FRAM devices. This
update does not affect any current boards.

3.1.54 V3.30
Fox_73181_3.30_2024-03-12T18.tar.gz

Cleanup things...
Process CONF flags a bit more cleanly/completely. not present.
The STAT command has some changes to make it sensitive to analog channel enable flags.

3.1.55 V3.27
Fox_73181_3.27_2024-03-04T10.tar.gz

Changes in audio processing. We now detect and process RIFF/WAVE file headers to determine
sample rate and sample count. Same subset of sample rates are implemented.
Old style entries still work for non RIFF/WAVE sample sets when the RIFF/WAVE file headers
are not present.

18

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.56 V3.26
Fox_73181_3.26_2024-02-20T14.tar.gz

Change DRA818/SA818 startup time to 2000mS to accommodate slow turn-on of some variants.

3.1.57 V3.24
Fox_73181_3.24_2024-02-14T18.tar.gz

First test on the 102-73181-10 hardware.
Update FLASH tables.
Update GPIO_MASTER.

3.1.58 V3.23

The cmd_stat routine was clobbering the FRAM/FLASH select field when it scans the exter-
nal memory devices as part of status reporting. A STAT command would cause an executing
sequence to stop (fatal flaw!).
Add a save/restore entry point to flash_local to save all the location pointers for later restora-
tion. Now cmd_stat calls the save and restore around the external memory device access.

3.1.59 V3.21

Release Date: Late Dec 2023.

Incorporating support for the 102-73161-25 boards. This artwork revision is similar enough to the
102-73181 boards that the software can support 102-73161-25, 102-73181-0, 102-73181-5 and the
102-73181-10 boards.
The 102-73181-0 boards do not exist in the wild due to the ICS307 being obsolete. As of this re-
vision the ICS307 does not have any management code present.

3.1.60 V3.17

Release Date Dec 2023.

Fixed a bug in the CW generator. The BUG added 1 chip to everything, so code sounded funny
and slow.

3.1.61 V3.16

Release Date Dec 2023.

Condense the battery reporting into the BATC and BATV commands.

3.1.62 V3.15

Release Date Dec 2023.

Implement the ONCE command.

19

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.63 V3.14

Release Date Dec 2023.

Updates to SI5351 support utility: si5351_calc.c. This utility updated to deal with an arbitrary
Si5351 crystal, adds a frequency offset switch, and incorporates a new MultiSynth parameter cal-
culation.

The STAT command is updated to display more SI5351 information when selected by the
CONF command.

The CONF command updated to add SI5351 clock selection and clock drive keywords.

3.1.64 V3.12

Release Date Nov 2023.

DRA818/SA818 transitioned to be driven by the cmd_message.c module and not by the com-
mand.c module.

3.1.65 V3.10

Release Date 12 Nov 2023.

Merging in the SI5351 management code.

Formalize the T1, T2, T4, T5 timers that control transmit timing.

3.1.66 V3.03

Release Date 22 Feb 2023.

Continuing debugging.

Show transmitter type in STAT command.
Flash/FRAM handling now working.
Voice output now working.
Updates to FOX_ICARC.tex.

3.1.67 V3.02

Release Date 10 Feb 2023.

Major rework of the command decoder. The command dispatch table now has the address of the
command handler and most of the command processing has been moved out of the command.c
module into individual command processors. This methodology reduces the compiler overhead,
significantly reducing the time required to recompile the software application.

The FRAM/FLASH system has been reworked to deal with both FRAM and FLASH devices and
to split the file systems into commands and audio to take advantage of dual storage devices.

20

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.1.68 V2.00/2.01

Release Date 10 Jun 2020.

This is a development release that adds support for the DRA818/SA818 walkie talkie modules.

3.2 Hardware Revisions

Artwork and component selection notes.

3.2.1 102-73181-10

The zNEO seems to be impossible to get in the 80-pin package. This reworks the circuit board to
use the 64 pin package.
This affects the MASTER signal. Software accommodates the different port pins that the MAS
signal connects to.
Repurposed the (physical) network time port. It wasn’t being used in the field and the DRA818
module will make better use of it’s serial port. The 3.5mm jack is now connected to the serial
command port so the case need not be opened to update the time prior to an event.
Added a small 800mA fuse to deal with a reversed battery connection. This is a surface mount
part.
The SI5351 can directly drive the RF daughter board with one of its clock pins (good for about
5mW).
Changed the 3.3V regulator to a higher power device (also lower cost).
Improve the charge circuit that keeps the lithium coin cell topped up.
This revision is required when using the DRA818/SA818 daughterboards.

3.2.2 102-73181-5

This hardware does not support the DRA818/SA818.
Switch to yet another clock generator, the SI5351.
Add charge circuit to keep lithium coin cell topped up.
This revision is not compatioble with the DRA818/SA818 daughterboards.

3.2.3 102-73181-0

This hardware does not support the DRA818/SA818.
Switch to ICS307 clock generator, which is end-of-life (of course).
Add the 2nd. SPI memory device (FLASH) to allow for large audio files at lower cost.
Only one or two of these were built.
This revision is not compatioble with the DRA818/SA818 daughterboards.

21

ICARC FOX Transmitters: 102-73181 KC0JFQ

3.2.4 102-73161-25

This is the last revision of the original series of boards that all used the ICS525 clock synthesizer.
This revision is not compatioble with the DRA818/SA818 daughterboards.

22

Chapter 4

Theory of Operation

Figure 4.1: 3rd. generation transmitter (102-73181-10)

The 102-73181-10 unit incorporates all the good features of the previous units. The 102-73161-25
and the early 102-73181 boards are similar enough to allow the 102-73181-10 software to operate
all of them.
The 102-73161-7 and 102-73161-12 boards are dissimilar enough (and exist in such small num-
bers) so as not to be compatible.
Note the 3.5mm jack, center right. This provides for a lower cost serial connection to load the
operating sequences into the transmitter (this applies only to the 102-73181-10 revision). The
serial command jack on the 102-73181-5 artwork (a vertical 3.5mm connector colocated with J5)
requires a haywire (on the backside of the board) to correctly receive command traffic. The 102-
73181-10 reallocates the second serial port to control the RF module (DRA818/SA818 or handy
talkie) and moves the control port function to the external 3.5mm jack.
Although the USB UART pads are retained on the board, the FT232 would not be normally be
populated (this is to reduce cost and improve useability). The more-or-less nominal configuration
is shown in the image. Take note that the 3.5mm (host control) jack is accessible without open-
ing the enclosure (streamlining setup on the night-before).

23

ICARC FOX Transmitters: 102-73181 KC0JFQ

These latest iterations (102-73181-5 and 102-73181-10) add a circuit to keep the (on-board) clock
backup battery charged when a battery pack is attached to the board.

The 102-73181-10 revision was necessitated by lack of availability of the 80 pin package that
housed the zNEO processor. This revision moves to a 64 pin package but remains software com-
patible as only 1 signal was affected by the smaller package.

A few hardware improvements were added that do not change the function of the system. One
change is moving the daughter board power control to a dedicated pin (to allow for reliable func-
tioning of the DRA818/SA818 daughter board).

4.1 Block Diagram

System block diagram:

Figure 4.2: Block Diagram

As indicated at the top of the diagram, this is specifically for the 102-73181-10 revision.
Earlier revisions have a different RF synthesizer and there are fewer control signals to the RF
daughterboard.

24

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.2 Schematics & Circuit Boards

Drawing philosophy for schematics and boards. A discussion of why the schematic and assembly
drawings look the way they do.
The design flow makes use of Eagle 6.5. Much of the schematics appearance is directly at-
tributable to the way Eagle 6.5 manages a design project.

4.2.1 Power & Ground

In general, ground connections are depicted with a ground symbol immediately adjacent to the
part that requires the ground connection. In a similar manner power connections are depicted
with a power symbol immediately adjacent to the part that requires the power connection.

The power symbols all look similar, a circle with the net name immediately above. The power
net, then, should be obvious from the net name associated with the (circular) symbol.
Net lines to connect various nodes to ground are avoided. There is an attempt to keep ground
net lines to under one inch (when viewed at full size).
This is an attempt to make connections obvious, to avoide having to chase a signal net to find
where it terminates or connects.

25

ICARC FOX Transmitters: 102-73181 KC0JFQ

There are many instances where a cluster of bypass capacitors are connected to a longer power
net line. This attempts to indicate rough placement of bypass parts.

This example shows bypass parts adjacent to a linear regulator. When reviewing the bypass re-
quirements on the ZLDO1117-3.3 the schematic is attempting to quickly show that bypass re-
quirements have been met.

4.2.2 Net Connections

Signals that flow off-sheet use a ’Label’ with ’Xref on’ (Eagle terms). This produces a rectangle
visual with a pointed side. Inside the visual is the signal name (i.e. the net name) and a sheet
reference. The sheet reference is composed of a sheet number and a grid location within the
sheet.
An example text visual (this example take from sheet 3 of the Fox Transmitter schematic) will
look like this:

Where VCMO_TONE is the net name /4 is the sheet where the signal flows and .1D is the
coordinate on the schematic. The coordinates within the sheet are seen along the top, left, and
right edge of the drawing.
Some nets that stay within one sheet may be labeled (PWMH0) so they can be referred to in
external documentation (such as this manual).

4.2.3 Schematic Symbols

Basic logic symbols, capacitors, resistors, and inductors follow the U.S. style. Polarized capacitors
have a slightly different look compard to unpolarized parts. Resistors are zig-zag (rather than a
non-descript rectangle).
Parts are shown in a form that is appropriate for the schematic. There is not an effort to represet
most parts as they appear on the circuit board.
Netlist verification is a job for the software package.

26

ICARC FOX Transmitters: 102-73181 KC0JFQ

Small active parts

For most small active parts, the power pins are shown as seperate graphics to move the
power connections away from the fuction of the gate (gate referring here to both digital
and analog functions). If at all possible, the power connection visual is close to the associ-
ated gate.
The tri-state buffer in figure ?? on page 26 has power depicted in figure 4.2.1 on page 25.

Unusual parts

Unusual parts have parts symbols that expose, as much as possible, the function of the
part.
A good example of this is the SI5351 on sheet 4 of the Fox Transmitter schematic. This
symbol mimics that used in the manufacturers datasheet.

High pin count parts

High pin count parts, such as the processor, are typically broken into multiple synbols.
The zNEO processor being a prime example.
The power pins (along with the oscillator pins and programming pins) appear as one sym-
bol on sheet 3. The remaining pins show up on multiple seperate symbols on sheets 3 and
4.
The zNEO has multiple 8 bit ports that may hve specific functions configured at run time.
The zNEO package used in the design has 8 GPIO ports, each with its own (unique) sym-
bol. The schematic symbol for these port pins are named using their GPIO assignments
(i.e. PA0, PA1, PA2, etc.). Listed in the symbol next to the assigned name are the alter-
nate function names.
The intent being a quick check that alternate function selections have been correctly
routed and to provide quick reference during software development.

27

ICARC FOX Transmitters: 102-73181 KC0JFQ

Connectors

Connectors have symbols that somewhat mimic the physical appearance of the part. In
this case we are trying to make the connections evident so they can be more easily under-
stood.
The 3.5mm TRS connector (sheet 3.1C) mimics the mechanical drawing in the datasheet.

Basic 0.025" headers are shown as simple rectangles with associated pins. In this caase the
pins on the schematics are ordered to match the connector. This to avoid having a large
universe of schematic symbols for any one specific connector.

A mechanical match also attempts to make clear the pin assignments for the connector (is
the dual row connector numbered row major or column major?).

28

ICARC FOX Transmitters: 102-73181 KC0JFQ

Worksheets

The schematics also tend to have excerpts from worksheets used in the design and in the
selection of parts. A convenient example being the parts selection table for the battery
monitor circuit on sheet 2.3F where parts can be selected based on the battery voltage
that will be used with a specific transmitter.

These are text notations without any net connections. Lacking any net connection or as-
sociated physical part, these tables show on the schematic but are not transfered to the
circuit board.

Mechanical Parts

Mechanical parts, such as the enclosure, spacers, and fasteners appear in the parts list. En-
tries for these parts are generated by adding them into the schematic (which adds a visual
into the board) or directly into the board drawing.

There is a preference to have them appear in the schematic simply to have everything com-
plete and consistent. In many drawings there are multiple instances of a particular part
in order to get correct quantity into the parts list. Othere drawings amy include only one
instance simply to make a note of the part number.

4.2.4 Parts Lists

The postprocessing scripts produce several formatted parts list.
Here is a brief rundown of those you may find useful.

102_73181_*.html

Web browsable parts list with same value parts grouped. There are links to DigiKey and
Mouser parts.
The multiple columns are used to diagnose problems with the information stored in the
schematic as well as the Master Parts Lists that match a part value, the package on the
circuit board, and the exact part available from DigiKey.

29

ICARC FOX Transmitters: 102-73181 KC0JFQ

102_73181_*.csv

A spreadsheet with much the same information as the HTML file.

102_73181_*.bom*

A plain-text rendering of the same information found in the HTML file.

102_73181_*.lbl.*

Printable labels for 14-up Avery labels.
These labels are provided to label bagged parts. The IDX(Index) numbers that show up
on these labels match up with all of the other files that group parts by value/package.

102_73181_*.mbr.*

Master Build Record.
The Master Build Record has one part per detail line. This list may be used to check off
parts as they are added to the board. You will note that the Comp S/N column has a
schematic locator for the part and the Component MIT column has the location of the
part on the circuit board.
The circuit board location is referenced to the lower left corner of the circuit board as
viewed from the top. This means that the X ordinate for the bottom moves from right to
left (i.e. backwards).

102_73181_*.DigiKey*.csv

Two dpreadsheets with DigiKey part numbers.
The BOM Manager entry will redirect to DigiKey where you can then upload the
complete parts list (102_73181_*.DigiKey_bom.csv). The CSV file has three quantity
columns to choose from and some quantities will need to be adjusted or substituted. It
does save having to enter it all by hand.

30

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.3 RF Overview

The motherboard RF section uses a programmable clock synthesizer to generate a carrier in the
2M band. This clock synthesizer makes use of a Digital Phase Locked Loop (DPLL) to gener-
ate a clock in the 2M band. The reference clock for clock synthesizer is generated using a sim-
ple 20MHz crystal (identical to the crystal used by the zNEO). Audio modulation is obtained by
varying the load capacitors across crystal using the audio signal to bias a pair of varactors.
The modulated reference clock is multiplied using an oscillator internal to the clock synthe-
sizer and then using the (SI5351) DPLL to slave the generated clock to the reference clock from
the 20MHz crystal. The output of the clock synthesizer is a square wave that is sent to the RF
daughter board. transmitter.
An amplifier may appear on the RF daughter board to increase the amplitude of the clock syn-
thesizer output. The RF daughter board is free to implement an RF amplifier as it sees fit.
The output from the RF daughter board, routed back to the main board, is then filtered to re-
move harmonics above the operating frequency.

The RF daughter board may also be fitted with a VHF transceiver module. This arrangement
eliminates the clock synthesizer altogether. The VHF transceiver module is commanded using the
serial path that connected to the clock network on earlier revisions of the board.
Note that the transceiver module is also available in a UHF variant, allowing the system to be
used in the 70cM band.

4.3.1 Motherboard Transmitter section

The motherboard transmitter section is built around the SI5351A clock synthesizer. The SI5351A
has a built-in oscillator that is used to generate a reference clock that is, in turn, used to disci-
pline an internal VCO. This internal VCO is configured to operate at a multiple of the carrier
frequency and fed, along with the reference clock, into a DPLL (inside the SI5351). The output
of this internal DPLL keeps the internal VCO operating at the target frequency. The VCO fre-
quency is, of course, divided to produce the carrier clock.
The SI5351A built-in oscillator uses an external crystal to generate a stable reference clock to
discipline the VCO. The load capacitors on this crystal are varactors (voltage variable capacitors)
that are, in turn, controlled by the audio modulation signal. The varying audio signal changes
the load capacitance on the crystal to shift its operating frequency, thus (FM) modulating the
carrier.
For low power applications, the amplifier stage may be left unpopulated with the output of the
SI5351 being delivered directly to the output filter. Output power using only the digital output
of the SI5351 is less than 10mW. This output level should be adequate for short range hunting.

For more power when using the SI5351, look at the 102-73161-28 and 102-73181-28 power ampli-
fiers. These amplifiers may be built with power levels up to a bit over 100mW.

31

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.3.2 VHF Power Amplifier

The output amplifier is external to the motherboard (one is shown installed in figure 4.1). The
mechanical interface is virtually unchanged from the 102-73161-25 board (where the amplifier
was first moved off of the motherboard). Pins have been added to support the DRA818/SA818
modules, but earlier power amplifier boards will work with newer motherboards.
Other newer power amplifiers are mechanically compatible with the older boards, but may not
perform well with the ICS525 without an input matching network.
At least one of the new power amplifier boards makes use of the split PTT (push-to-talk) and PD
(power-down) connections of the 102-73181-10 board.

4.3.3 VHF Transceiver Module

There are at least two VHF transceiver modules available (eBay or Amazon) that provide an al-
most complete walkie-talkie function, These are the DRA818 and SA818 modules. These mod-
ules have the entire RF section for transmitter as well as receiver. The RF circuitry on the main
board need not be populated when making use of these Tx/Rx modules.
For our fox transmitters the receive section is not used. The DRA818/SA818 module may be
pushed into a power-down state or switched off entirely to conserve power between transmissions.
The DRA818/SA818 modules are not backwards compatible and may only be used with the
102-73181-10 (or newer) boards. Older revisions are missing discrete control of one of the
DRA818/SA818 control pins.

32

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.3.4 Output Filter
There is an output filter on the main board to reduce harmonics produced by the various am-
plifiers. The DRA818 and SA818 modules both produce rich harmonics when transmitting. The
motherboard filter component size is fixed on the artwork. The chosen inductors should allow for
a 6 meter filter to be configured with values noted in the table on the schematic.

Figure 4.3: SI5351 Output Filter Schematic

Note that the schematic shows duplicate inductors and unpopulated capacitors. This provisioning
of extra parts on the circuit board allows the filter configuration and parts selection to change
(allowing for alternate filter topology). For example, L33A is a surface mount package and L33 is
a thru-hole package.

Other Bands

The following table, found in the 102-73181-10 schematic, contains the calculated filter compo-
nent values for various cutoff frequencies.

Figure 4.4: Output Filter Table

33

ICARC FOX Transmitters: 102-73181 KC0JFQ

The table has exact calculated values, shown in black. The tool also calculates and plots using
standard values, these being in red. The inductors that are not from the AIAC-1812 series in the
parts list, are indicated in the table.
The tool used for the calculation:

https://markimicrowave.com/technical-resources/tools/lc-filter-design-tool

160MHz Low Pass

The filter response plot for the 160MHz case from the Marki Microwave LC Filter Design Tool:

Figure 4.5: 160MHz LPF Filter Response

The filter response plot taken from a NanoVNA-H4:

Figure 4.6: VNA Filter Response

34

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.7: TinySA Spectrum

This plot is the fox transmitter sending carrier showing harmonics that make it through the out-
put filter. VBW/RBW is 10KHz.
Comparing figure 4.7 and 4.6 it doesn’t look like the Nano-VNA-H4 is properly calibrated above
about 280MHz as the TinySA shows good harmonic suppression.

Figure 4.8: TinySA Spectrum 2

Here we are narrowed in on the 2M band. An adjacent H.T. shows carrier present and audio is
quiet. VBW/RBW is 3KHz.

35

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.9: TinySA Spectrum 3

Here the scan is taken with higher resolution. VBW/RBW is 10KHz.

74MHz Low Pass

The filter response plot for the 74MHz case from the Marki Microwave LC Filter Design Tool:

Figure 4.10: 74MHz LPF Filter Response

Using the Marki Microwave LC Filter Design Tool a set of values can be found for operating in
the 6M band that uses inductors from the Abracon AIAC-1812 series of inductors.
This has not been tested by the author.

4.4 Frequency Selection

There are several frequency selection methods that will be encountered with the 102-73161 and
102-73181 hardware.

36

ICARC FOX Transmitters: 102-73181 KC0JFQ

There is a limited frequency selection table in the fox transmitter operating software. The table
for the ICS525, covers a limited frequency range sue to limitations of the ICS525. Thes table for
the SI5351 covers a very limited frequency range, sufficient only for characterizing the frequency
offset of the reference oscillator.
The software supports a method of saving register values in external memory (i.e. FRAM). Oper-
ating on frequencies outside those provided in the table is accomplished by storing register values
for additional frequencies in the external memory. The external memory can be loaded through
the control port (this does not require a zNEO programmer).
The external table may be used to produce a carrier in the 6M band, if desired.
The DRA818/SA818 modules are directly programmed with their operating frequency using the
text in the FREQ command argument.

4.4.1 SI5351

The SI5351 requires us to come up with a set of control patterns to be loaded into the (somewhat
less than 188) device registers.
Skyworks provides a clock configuration tool for the SI5351. We also have a utility to do the
same work, generating zNEO source code and Fox Transmitter setup commands.
The plan is to keep a small subset of frequencies in the zNEO program flash and provide any ad-
ditional register patterns using the command interface.

With the 3.73 and later software, the table has 144.100MHz, 144.150MHz, 144.200MHz,
and 144.300MHz. This should provide a few spots that can be used to measure the crystal
offset.

With the 3.80 and later software, the table was spread across the band with zero-offset
points at 144.100MHz, 144.500MHz, 145.000MHz, 145.500MHz, 146.000MHz, 146.500MHz,
147.000MHz and 147.500MHz. This set of points should allow characterization of the crys-
tal offset across the 2M band.

This approach demands that an external frequency table be loaded for proper operation. Al-
though you are free to generate register patterns for any arbitrary frequency, your hunters will
be using commercially available radios with 5KHz channel spacing.

The FRAM on FOX21 through FOX32 is loaded with an external frequency table, in
5KHz steps, to cover between 144.100MHz and 144.345MHZ. This external frequency ta-
ble accounts for the error in the reference oscillator.

Keep in mind that there are no interlocks in the software to limit the frequency we select! It is
the operators responsibility to configure the SI5351 to operate within the frequency allocations of
the operators license!

37

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.11: SI5351 Schematic

On the left you will find the FM modulation scheme introduced on the 102-73161-25 board. A
pair of varactor diodes are used to provide the capacitive load for the reference clock crystal. The
control voltage arrives at L5 on the left of the schematic fragment.
Trimmers are provisioned, although the SI5351 provides internal load capacitors that are pro-
grammable, so we don’t expect to populate CT1 or CT2.
The SI5351 synthesizer, U2, provides three clock channels that can be independently configured.
In our application, however, we will configure all three synthesizer blocks to produce the same
frequency, that is to say the carrier.
Only one of the PLL synthesizers is required as we are operating all three channels at the same
frequency. The remaining synthesizers are configured in their power-down state to reduce power
consumption.
Also take note that we deviate from the nominal crystal value for the SI5351 as suggested in
the datasheet. For our design, we choose to make use of the same crystal for the zNEO and the
SI5351. The Multisynth register values must then be calculated based on the 20MHz crystal.
The clock output that is in use is enabled using a command sent through the I2C port on the
SI5351.
CLK0 is a direct drive to the RF daughter board. To use this connection on the 102-73181-5
card, a haywire must be installed to form the connection.
When the clock output is configured for high drive (i.e. 8mA), the nominal output impedance is
50Ω. The configuration bits are in SI5351 register 16.
CLK1 is buffered and shifted to a 5V level before being routed to the daughter board.
CLK2 is buffered using an LVDS driver and the delivered to the daughter board.
Take note that on the 102-73181-10 card, CLK0 and CLK1 share the RF pin on the daughter
board connector. If U4/U9 are populated, a trace cut is required on the bottom side of the cir-
cuit board.

38

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.4.2 DRA818/SA818

The DRA818/SA818 modules differ in that they are self contained radio subsystems. Frequency
selection is handled in the module, not by the clock synthesizer on the motherboard. The moth-
erboard synthesizer does not need to be populated when using this RF module. Note that a
1½W or 2 W 5V regulator is required when using these modules.
The module is controlled using the 2nd. UART channel (it is no longer routed to the time net-
work). The DRA818/SA818 module control scheme is fully implements on the 102-73181-10
boards only. Earlier board revisions do not implement the required power and control elements
for the DRA818/SA818 module to be correctly controlled.
As mentioned elsewhere, the time network function is not implemented in this version of the soft-
ware.
Selecting frequency on the DRA818/SA818 may be done directly, with the zNEO simply limiting
selection to the 2M and 70cM amateur spectrum (the DRA818/SA818 may be had in either VHF
or UHF models)

Figure 4.12: DRA818 Daughter board Schematic

This is the marked up schematic. This is how a production daughterboard is built. This reflects
how the board in figure 4.13 on page 40 is built.
The audio amplifier and indicator lights are not needed so are not installed (R18 and D3, al-
though shown on the schematic, are not installed).

39

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.13: DRA818 Daughter board

This is a functional DRA818 board. This is the latest revision.
The labels show the power delivered to the antenna after the signal is attenuated (R20, R21, R22
on the 102-73181-36 daughter board) and filtered (on the 102-73181-10 motherboard).
The two label values indicate power measured without the JP2 jumper in place and the power
with the JP2 jumper in place.

The DRA818/SA818 daughter boards operate correctly only with the 102-73181-10 circuit board.
Earlier main boards do not provide power control that allows the DRA818/SA818 to operate re-
liably. The control software manages PTT*, CTL, and power to the board independently. The
V3.27 and later software correctly supports power sequencing on the 102-73181-10 board.

Note that the SA818S module is specified to operate at 5.0V whereas the DRA818 module op-
erates at 4.2V. The SA818S module therefor has the potential to produce slightly more output
power.
When using the SA818S module VR1 can be eliminated. D1 may then be replace with an induc-
tor or a simple jumper wire.

40

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.4.3 ICS525

The ICS525 is a simple clock generator aimed at producing additional clocks required in a multi-
clock domain. We hijack it to produce several frequencies in the 2M band.

Figure 4.14: ICS525 Schematic

The modulation scheme was first tested on the 102-73161-25 revision. DV1 and DV2 provide the
variable load on the crystal while C58 and C41 provide DC isolation.
The ICS525 requires 3 divider values to operate. A small selection of values are stored in an in-
ternal table to support the 102-73161-25 hardware. Each entry has a frequency value (floating
point), and the three register values for the ICS525. The selection method is to find the closest
value in the table. In practice, the table may be dumped to find the available frequencies (D525
TABLE).
Selecting the ICS525 device with the CONF command also sets configurations for the port bits,
analog channels available for use, and the analog reference used by the zNEO A/D subsystem.
The VCO configuration on the 102-73161-25 board is more-or-less identical to that shown in fig-
ure 4.11 on page 38.
The ICS525 module may not be present in the image loaded into the 102-73181 boards. This
saves a small amount of ROM space.

4.4.4 ICS307
Not currently supported as no 102-73181-0 boards were built (these use the ICS307 device(.

41

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.5 Transmit Timing
A transmission cycle is initiated when a BEGN command (table 10.32 on page 193) is executed.
This command turns on the RF system and waits for it to stabilize. Once operating steady-state
and station identification message (i.e. the station callsign) is transmitted.
Transmission is terminated after a DONE command (table 10.37 on page 198) is executed. This
command causes a station identification message to be sent before the RF system is shutdown.

Figure 4.15: Transmit Timing

Assuming the document has been printed in color, the black labels indicate commands (in the
FRAM), the blue labels indicate signals on the main board and red labels indicate signals on
the RF daughterboard.

42

ICARC FOX Transmitters: 102-73181 KC0JFQ

BEGN

Command
This command may take some time to execute when using the DRA818/SA818 as it manages
the timing to place the transmitter into an active state and send the signon message traffic. The
simple RF amplifier boards so not require the extended wakeup time.
This signon message looks like:

CQ CQ CQ de <call>

All message traffic starts this way so that an initial callsign is sent before any variable message
traffic.
This is the timing chart for the DRA818/SA818 which has an extended T1 period to allow the
transceiver module to come out of a sleep state. When using the SI5351 synthesizer, this T1 pe-
riod is considerably shorter as the SI5351 requires on the order of a few milliseconds to start pro-
ducing the carrier.
This command intrudes into the beginning of the T3 period as it sends out its signon traffic.

DONE

Command
This command also takes some time to execute as it manages the timing to shutdown the trans-
mitter at the end of message traffic. A signoff message is sent that looks like:

de <call> SK SK SK

The signoff message and station identification must be sent while the RF system is active. Once
all the required traffic has been sent, the RF system is placed back into an idle (low power) state.
The station identification serves to keep the unit compliant with part-97 requirements.

ACTIVE

System State
This trace indicates when the Fox Transmitter System is dealing with active message traffic. This
is an active scheduling event. No other scheduling activities may occur at the same time (i.e. sin-
gle threaded execution).

TX_ENA

Motherboard Signal Net
This is the control signal (from the zNEO) that causes the transmitter to produce RF. When this
signal is active, the 5-volt and 9-volt(battery voltage) supplies to the daughter board are enabled.
This signal enables the power switch devices U81 and U91.

43

ICARC FOX Transmitters: 102-73181 KC0JFQ

CTL/PD*’

Motherboard Signal Net/DRA818 Signal Net
This is the control signal (from the zNEO) that has been added to deal with the power down
feature of the DRA818/SA818 module. The logic level of this signal may be changed on the
DRA818 daughter board.

PTT*’

DRA818 Signal Net
This is the TX_ENA motherboard signal, which is positive true, with its logic sense switched
to match the requirement of the DRA818.

T0 IDLE

System Idle.
The fox transmitter system in in the T0 state when waiting for a scheduling point to occur.
Most of this time is spent with the zNEO executing a HALT instruction to minimize power.
Commands will be proceesed in the T0 state. Interrupts continue to be proceesed so the system
time updates.

T1

DRA818 module wakeup time.
This is the time needed for the DRA818 module to exit the power down state in preparation for
transmit. Note that this time is somewhat lengthy.
This timing element is set according to the RF subsystem.

T2

RF stabilization time.
This is time required for the transmitter to stabilize after being enabled (i.e. after PD active).
This is the time period needed before the RF subsystem to produce clear audio as well as a guard
time to allow the receiver to open its squelch circuit.
This timing element is set according to the RF subsystem.

T3

Message Transmission Time.
This is the message delivery period. The time spent in this state is controlled by the message
traffic.
This timing is set by the outgoing message traffic.

44

ICARC FOX Transmitters: 102-73181 KC0JFQ

T4

Shutdown Quiet Time.
This time slot follows the shutdown message traffic. This provides a guard at the end of trans-
mission so as not to chop off the end of the shutdown message.
This timing element is set according to the RF subsystem.

T5

Shutdown time.
This is the time period following the shutdown of the RF subsystem. It provides an interlock
time between messages.
This timing element is set according to the RF subsystem.

4.6 SI5351 Synthesis

The SI5351 synthesizer was added to the 102-73181-5 update and provides a more generic (flexi-
ble) means of synthesizing a carrier. Unlike the ICS525 and ICS307, we aren’t locked into just a
few useful frequemcies.
Additional discussion concerning configuring the SI5351 may be found in section 17 on page 295.
The software in the Fox Transmitter does not perform the calculations necessary to generate the
register patterns, rather we rely on a simple table lookup. This lookup scans the external FRAM
and the internal program flash. This discussion covers the steps used by the external utility that
generates the frequency setup tables.

4.6.1 SI5351 Block Diagram

Figure 4.16: SI5351 Synthesizer Block Diagram

Working from the left, we have the reference oscillator (Input Stage) that generates the (exter-
nally modulated) 20MHz (not 25MHz or 27MHz as described in the datasheet) reference clock
(see section 4.11 on page 38). This reference clock is passed on to Synthesis Stage 1

45

ICARC FOX Transmitters: 102-73181 KC0JFQ

Synthesis Stage 1 consists of the DPLL, VCO and Multisynth that are MSNA. The VCO oper-
ates up in the the UHF range (roughly 600MHz to 900MHz). MSNA is configured to operate the
VCO at an integer multiple of the carrier.
The DPLL divisor in MSNA (which need not be an integer) is configured to divide the VCO
clock (which is operating at an integer multiple of the target carrier frequency) output down to
match the 20MHz reference.
MSNB (PLL B) is not used at all, so it is left powered down.
Although operating MSNA with a fractional divisor introduces some phase noise, this is not con-
cerning for operating FM. We introduce considerable noise (i.e. audio modulation) at the refer-
ence crystal.

Synthesis Stage 2 are the MS0, MS1, and MS2 synthesizers. These all configured to divide the
MSNA output (an integer multiple of the carrier) down to the carrier frequency.
By keeping MS0, MS1, and MS2 set to integer divisors, we avoid introducing additional phase
noise at this stage.

The Output Stage are the output dividers R0, R1, and R2.
These are set to divide by one, making CLK0, CLK1, and CLK2 all at the carrier frequency.
Only one of the three Stage-2 and Output-Stage paths are enabled. The unused channels remain
in a power-down state to conserve power.
Consult the source code to the table generation utility in section 17 on page 295 for specific lim-
its on the operation of the VCO.
Shown below the Synthesis Stage 1 block is a (very) rough approximation of the PLL, VCO and
Multisynth divider. This block incorporates the first fractional divider (called MSNA/PLL-A
and MSNB/PLL-B) required to divide the VCO frequency down to match the reference crystal
frequency.
In our Fox Transmitter, we make use only of MSNA/PLL-A, leaving MSNB/PLL-B in a
power down state to save power.

In Synthesis Stage 2, we see three more instantiations of the Multisynth divider block used to di-
vide the VFO output down to the target carrier frequency (or a nice integer multiple thereof).
Keep in mind that the input to this stage is the internal VCO, so the frequency range of the in-
put is the roughly 600MHz to 900MHz mentioned in the previous paragraph.

In the Output Stage, we may divide by an integer divisor, but for the Fox Transmitter we fix this
stage as a divide by 1.
We also select the appropriate output buffer configuration. As suggested in the drawings, only
one of the three outputs may be enabled for correct operation. The unused Multisynth blocks are
left powered down as you would expect to save power.

46

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.6.2 SI5351 VCO Frequency

First we must come up with a frequency plan, targeting a good spot to operate the VCO.
For the Fox Transmitter, we take a direct approach by attempting to choose a VCO frequency
that is an even multiple of the carrier.

Figure 4.17: SI5351 Synthesizer VCO Selection

4.6.3 SI5351 MSNA fraction

The MSNA divisor, then, will be calculated from the VCO frequency in order to divide the VCO
frequency down to match the reference crystal frequency.
We use this calculation to come up with the values for the three Multisynth registers.

Figure 4.18: SI5351 Synthesizer Register Calculation D

4.6.4 SI5351 M0/M1/M2 fraction calculation

The divisor for the M0/M1/M2 Multisynth, are all the same and are usually easy to calculate as
this is a simple integer division.

Figure 4.19: SI5351 Synthesizer Register Calculation E

47

ICARC FOX Transmitters: 102-73181 KC0JFQ

As we have chosen to keep an integer divisor here, the values for the MSx_* registers are simple
to come up with. The value for MSx_P2 is always zero and the value for MSx_P3 is always one
for the 2M band. The value for MSx_P1 will generzally come out to a value of 256 for the 2M
band.

Figure 4.20: SI5351 Synthesizer Register Calculation F

4.6.5 SI5351 R0/R1/R2 divisors

We target a divisor of one or two here.
When operating in the 2M band, we simply fix the divisor with a value of one.
The divisor can be set to an even number to operate down in the HF bands (specifically 50M).

4.7 Voice

Although a voice capability was not initially planned for the 102-73161 boards (although this
would have been desirable), there didn’t seem to be enough resources to be able to provide this
capability using the zNEO.
After some deep thought following a question from W0PPF the answer began to percolate to the
surface (42, the answer to life the universe and everything). With a bit of experimenting, the PWM
controller in the zNEO provided the solution.
Using a large FLASH device (64Mb) we can store about 1000 seconds of audio that is digitized
with around 2KHz to 2.5KHz of bandwidth.
The zNEO is extremely SRAM limited, so the waveform data is not buffered in the zNEO but
is processed a single sample at a time. The sample rate is controlled by the SPI shift clock, this
clock being configured to operate at 32KHz for the 4KHz rate (or 40KHz for q 5KHz rate) result-
ing in a new sample from the FLASH device becoming available every 200uS to 250uS.
A source audio file can be re-sampled into the required format using sox. The expected waveform
is 8 bit unsigned. The sample rate may be set between 4,000 samples/second, and 16,000 sam-
ples/second. The audio bandwidth of the RF section is quite limited so the slower sample rates
(4KHz to 8KHz) result in understandable speech. The slower sample rates also allows a reason-
able amount of voice storage.
Moving to a 5KHz sample rate modestly improves readability without significantly decreasing
storage capacity (in terms of time stored in the flash device).
A sample rate of 8KHz cuts the available time in the flash device while increasing the audio
bandwidth past what is allowed on the 2 meter band. This bandwidth will also be limited by the
filter that sits between the PWM output and the modulation net.

48

ICARC FOX Transmitters: 102-73181 KC0JFQ

Sample rates of 10KHz and 16KHz may also be processed from the FLASH memory. These sam-
pling rates exceed the allowed bandwidth available through the RF section, so should not be used
in a Fox Transmitter application.
These sample rates are implemented to allow the Fox Transmitter motherboard to be used in
other applications where clear audio is required. At these sample rates, the volume of data loaded
into the FLASH becomes much larger. This requires larger FLASH devices thereby increasing
load times.

4.7.1 Audio File System

The Audio File System is split into directory records that reside in the FRAM device, and wave-
form data which is held in the FLASH device

This seperation comes about due to the way that FRAM and FLASH are managed. The
FRAM driver deals with 32 byte records and does not have to account for device erase time
constraints. The FLASH driver deals only with InTel HEX records. Furthermore, the search
algorithm looks only in the FRAM for records as a search of FLASH memory could take quite
some time due to its size.
Separate device erase commands are implemented for the FRAM and FLASH. These com-
mands do not cross device boundaries.

The Audio File System directory consists of multiple 32 byte records in the Configuration Com-
mand File System.

The Audio Data is stored in the FLASH device as a WAV file (i.e. binary data). Each file con-
sisting of some multiple of 32 bytes as the data in the Audio File System is loaded using InTel
HEX records. The address in each InTel HEX record is relative to the start of the FLASH de-
vice. As the FLASH device is larger then 64K bytes, a type-4 InTel HEX record is expected to
deal with the upper bits of the address.
Nominally the InTel HEX record is 32 bytes of image data. Shorter data records are processed
by the loader but the 32 byte length is chosen to minimize download times. Buffer size con-
straints dictate the 32 byte record length, longer records will overflow the input buffer.

49

ICARC FOX Transmitters: 102-73181 KC0JFQ

The command decoder recognizes an InTel HEX record by its leading colon (:) character. The
decoder also discards embedded space characters allowing it to process the expanded hex file line
shown here as well as a line formatted in a standard manner.
Example portions of an audio file:

:02 0000 04 0000 FA
:20 0000 00 524946465010000057415645666D74201000000001000100A00F0000A00F0000 4F
. . .
:20 3FE0 00 8A86757E787D8B898A8C807C7E717764708E749F8C7D916D777A76808D828C89 B6
:02 0000 04 0000 FA
:20 4000 00 7883767A8489888C837D7F7677766A82847D9B7E88876F8077788584848D7F82 A4
. . .
:20 F440 00 7C7D7D7C7E7C7D7F7E7F7E7D7D7D7C7D7C7D7D7C7D7E7C7C7E7C7C7D7C7E7D7D 0D
:00 0000 01 FF
esav TALK=V_W0JV 56448

This audio file fragment shows waveform image data (i.e. the InTel HEX records) and a directory
entry describing location of the audio file.
This example fragment is part of the vocalization of the W0JV callsign. This audio fragment
is RIFF/WAVE formatted, so the length and sample rate are in the RIFF/WAVE header. You
should be able to pick out "RIFF" (0x52 0x49 0x46 0x46) at the begining.
Had the file been a naked waveform, more information would be required in the directory record.
It would then have to appear as:

esav TALK=V_W0JV 56448 6112 4K

With the length and sample rate explicitly specified in the directory record.

Table 4.1: InTel HEX record

Column
Group

Contents Column Description

1 Length InTel HEX record Key and record length
2 Address Address (within 64KB page)
3 Type record type
4 Data core image data
5 Checksum simple sum of all hexadecimal data

The above example was produced by the audio utility that is used to gather multiple audio clips
together to be stored into the FRAM and FLASH devices.
The audio utility inserts white-space into the InTel HEX records to delineate the columns indi-
cated in Table 4.1 to improve readability.

50

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 4.2: InTel HEX record Types

Type Record Contents
0 ASCII encoded HEX record
1 END-of-FILE record
2 Address Offset
4 Extended Address

These are the InTel HEX record types recognized by the command decoder.

The zNEO deals with the Audio File System through the TALK= record in the FRAM file sys-
tem. This TALK record holds the name, start address, byte count, and sample rate of the au-
dio clip. When commanded to speak, the zNEO looks in the FRAM file system for a matching
name and uses the start, length, and rate to read data from the FLASH memory passing it to the
PWM register that controls the PWM width.
The rate with which the data is processed is controlled by the SPI clock rate. The SPI clock is
programmed to operate at eight time the sample rate. This causes the SPI controller to shift
data at the correct rate. The data available status in the SPI controller regulates the sampling
rate.

4.7.2 Audio File Utility

The Audio File Utility is used to gather a number of audio clips together and produce an InTel
Hex File that can be downloaded into FLASH and the directory records loaded into FRAM.
Input to the Audio File Utility is a flat file listing the audio clips that will be loaded into the fox.
Output consists of the InTel Hex records containing the waveform data, and the directory records
that contains the starting address of the waveform file in FLASH.
The raw input files are produced using sox to re-sample the audio clip, typically from a .wav file,
to a 4KHz sample rate, 8 bit unsigned samples. The resulting file from this processing is refor-
matted by the Audio File Utility for loading into the fox transmitter.
The InTel Hex file produced uses three record types; a type-0 detail record that is 32 octets long,
a type-4 extended address record to provide the upper address bits, and a a type-1 EOF record
to indicate end of file.

4.8 TOY Clock

The TOY clock is used to keep track of time. This allows the group of transmitters to be setup
prior to use and then activated (i.e. switched on) without the need to perform any synchroniza-
tion in the field at the event. Careful selection of the load capacitors on the DS1672 clock chip
should allow the clock to run with minimal error.
Inadvertant power loss in the field does not affect scheduling, simply restore power and the fox
transmitter will send message traffic on schedule.

51

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.8.1 The DS1672

The DS1672 is a simple TOY (Time-of-Year) clock. It has a 32KHz oscillator (requiring an ex-
ternal crystal) and divider. A 32 bit seconds counter is accessed over the I2C interface. This 32
bit register may be loaded by the zNEO to set the system time. No conversions need be per-
formed as the DS1672 time register format is identical to the system time format (truncated
UNIX time).
The DS1672 allows for a backup battery, so an on-board battery is provisioned on the circuit
board to keep the clock running when the system is not powered.

4.8.2 Reading from the DS1672
Some units seem to exhibit a problem when first reading the DS1672. This shows up as reading
all zeros from the time register leaving the fox transmitter system without a useful time.
This, of course, prevents the fox from operating on its assigned schedule. It runs, but with a bad
time that isn’t in sync with the rest of the transmitters.
To address this issue, the DS1672 must read twice with a small delay between reads. A delay of
1/2 second between reads seems to be adequate.

Initialization Example:

esav INI=TIME
esav INI=WAIT 0.5
esav INI=TIME
esav INI=EPOC -5.0

Table 4.3: DS1672 Register Map

Addr B7 B6 B5 B4 B3 B2 B1 B0 Function
+00 D7 D6 D5 D4 D3 D2 D1 D0 Counter Byte 0
+01 D15 D14 D13 D12 D11 D10 D9 D8 Counter Byte 1
+02 D23 D22 D21 D20 D19 D18 D17 D16 Counter Byte 2
+03 D31 D30 D29 D28 D27 D26 D25 D24 Counter Byte 3
+04 EOSC Control
+05 TCS TCS TCS TCS DS DS RS RS Charge

Four registers (0..3) hold the current seconds count.
The fifth register (4) is the oscillator enable bit; zero to enable the oscillator.
The sixth register (5) are the charge control bits; they may all be set to zero to disable the
DS1672 charge function.

52

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.8.3 The DS1672 Charge Control Circuit
A rudimentary backup battery maintenance circuit is included starting on the 102-73181-5 board
revision. This circuit supplies operating current to the DS1672 when the main battery is con-
nected. Current draw from the main battery is minimal, on the order of about 25 micro-amps.
Given a typical AAA cell with a capacity of 1000mAH, the AAA battery will last over 5 years
powering the DS1672.

Figure 4.21: DS1672 Charge Control

The backup battery maintenance circuit, show above, provides operating current to the DS1672
and a few hundred nano-amps to the backup battery. When connected to the main battery, the
coin cell should remain fully charged.
As the current is limited to around 1 micro-amp, a primary cell with a reverse current limit of
1uA may be used when a battery holder is installed in place of a permanently installed cell.

The main battery voltage starts out at a bit over 9.0V (i.e. when fresh batteries are first in-
stalled). R60 and DZ1 form a shunt regulator to provide a fixed voltage node to then supply a
(more-or-less) fixed current to the battery and DS1672.
The voltage at the cathode of DZ1 remains fixed, so the current through R60 varies with the
main battery voltage.
This fixed voltage at the DZ1 cathode allows the current through R61 to be independent of the
main battery voltage. The resulting current is primarily dependent on the backup battery volt-
age, D6 and the resulting voltage drop across R61.

53

ICARC FOX Transmitters: 102-73181 KC0JFQ

D6 isolates the backup battery from any loads that may appear on the VBATT net. The only
current that comes out of the backup battery goes to the DS1672
The forward voltage drop across D6 was experimentally measured at approximately 250mV. This
leaves the drop across R61 at roughly 800mV. Given the value of R61 at about 680KΩ, the cur-
rent supplied to the coin cell and the DS1672 is limited to about 1.2uA. Roughly half of this is
consumed by the DS1672, leaving less than 1uA of charge current available to charge the coin
cell.

Although the circuit will supply standby current to the DS1672 when the zNEO will not run, the
fox transmitter should not be left with discharged batteries in order to avoid battery leaks that
will cause damage to the circuit board.

DZ1 is a simple 4V shunt reference. DZ1 keeps its cathode near 4.1 volts when supplied with
some minimum amount of current.

DZ1 Selection
The chosen reference device, the ZRC400, comes in an SOT23 package requiring only 18µA to 23
µA to stay in regulation.
One pin compatible device is the LM4040 which requires about 70 micro-amps through the device
to maintain regulation. Changing to this device would require a change to R60 (to about 56K) to
supply additional current to keep the DZ1 cathode at the target 4.1V.
As battery voltage drops below 7 volts, the ZRC400 cathode will start to fall below the specified
minimum of 4.1 volts. This, in turn, reduces the currrent that can be supplied across R61/D6
which will then allow current from BT1 to flow into U8. When BT1 is installed as a coin cell
holder and we are using a CR1220 cell (37mAH) and assuming the DS1672 current draw is less
than 500nA, we have a backup time of 8 years.

Using SuperCAP for BT1
You may substitute a Super-CAP in place of the TOY clock backup battery. This device,
FC0H224ZFTBR24, will mechanically fit on the battery pads. Some Kapton tape should
be placed under the cap to isolate traces and vias that could make contact with pads on the
Super-CAP.
As the available current to the backup battery is very low, on the order of a micro-amp, it will
take considerable time to charge the cap (on the order of a month!).
We can improve that somewhat by reducing the capacitors electrical size (a mechanically
smaller may not reach the mounting pads). A 100mF device FC0H104ZFTBR24 and a
47mF device FC0H473ZFTBR24 are listed at DigiKey.
These values are millifarads not microfarads!
The expected run time here would be similar to the charge time as we expect the discharge
current to be a bit less than half of the available charge current. This should give us days of
operation.

54

ICARC FOX Transmitters: 102-73181 KC0JFQ

Using Aluminum Electrolytic for BT1
We may also substitute a plain old aluminum electrolytic place of the TOY clock backup bat-
tery assuming we keep the main battery installed from time we set the clock through to the
end of the hunt. A typical aluminum electrolytic device, such as EEE-FK1A102P, is me-
chanically similar to the Super-CAP above. Some Kapton tape will be required here.
A larger device, EEE-FK1A222AQ, may also be employed. This capacitor is mechanically a
bit of a better fit to the pads on the circuit board. Some Kapton tape is required here as well.
The limited current in this scenario presents much less of a charging issue as we as dealing
with 1mF capacitor. The charge time in these cases is nominally less than 1 hour after the
main battery is connected.
The expected run time here would be similar to the charge time as we expect the discharge
current to be a bit less than half of the available charge current.
In this case, assume we keep the main battery in the transmitter after the time has been set
(not at all unreasonable). If we need to change the battery in the field, the 1000uF capacitor
would provide tens of minutes of backup time to changeout the battery.

BT1 not installed
We can probably get away without installing a backup battery at all. The external charge
control circuit (R60, DZ1, R61, D6) can be modified by substituting a ZRC330F01TA shunt
reference (3.3V) for DZ1 (which was a 4.1V) and lowering the resistance or R61 to around
47K. This substitution allows the regulator circuit to provide 3 volts to the DS1672 through
the main battery.
A long as the main battery is well connected, the TOY clock should function and track time.
Keep in mind that noise on the main battery net (such as from a loose connection) has the
potential to glitch the TOY clock and take out our time reference.

4.8.4 System Time

The system time, maintained by the zNEO, is kept in the same format as that stored in the
DS1672. No conversion is required when retrieving the time data. Neither is any conversion re-
quires when storing time into the DS1672.

55

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.9 Deviation Control

Carrier deviation signal generation.

Figure 4.22: Deviation

The output from R38/R48 connects to the crystal load capacitors shown in figure 4.11 on page
38.
VCMO_TONE is the CW signal from the square wave generator (in the zNEO). The gain
through this path is controlled by R47 (R10/R11 impedance is 75K).
PWMH0 is the audio signal from the PWM channel in the zNEO. The gain through this path is
controlled by R54.

56

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.23: External Connection

On the right, note that the DEV signal touches R40/R41. These two resistors may be used in
conjunction with R44 to attenuate the signal that appears on the tuning capacitors on the SI5351
crystal.

The DEV (audio) net is also routed to the RF daughter-board.

Figure 4.24: VCMO_TONE

The CW audio tone comes from a counter/timer block in the zNEO. Timer 0 is configured to
generate a square ware with the period coming from the TONE command. This square wave
is output on pin 48 and is buffered by U10. PA0 (on pin 49) is an output bit used to gate the
output of PA1 (on pin 48). The TONE_ENABLE net also runs to the buzzer that may be
used for debugging. send code.

57

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.25: PWMH0

The audio signal is produced by the PWM controller in the zNEO. PC6 is configured as the out-
put of the PWM block. Once the PWM controller is configured, waveform data is read one eight
bit sample at-a-time from the FLASH device and loaded into the PWM control register. As men-
tioned elsewhere, sample rate is controlled by the SPI clock.

4.10 Power

The device is aimed at being able to run on a LR22 9V alkaline battery
for the duration of a hunt assuming a 20% duty cycle. The limited current
delivery capacity of the LR22 limits the achievable output power, so choose
the PA to limit current consumption (consider running barefoot using the
102-73161-22 Amp Bypass board).
The circuit board, when installed in the case specified in the schematic, al-
lows for using a AAA pack to increase battery life to about 24 hours with a
100mW amplifier. It also seems that a set of six AAA cells are less expen-
sive that a single LR22 battery, go figure.

The voltage regulator in the -7 and -12 artwork is a simple linear regulator so the efficiency is
rather unremarkable. Operational life is somewhat less with the linear regulator.

The voltage regulator used in later models and revisions is changed from a linear regulator to
a switch-mode regulator in order to improve efficiency and, therefore, battery life. In addition,
both the processor and the configurable clock are able to make use of a low cost crystal to allow
elimination of the MEMS oscillator. This change eliminates the most difficult to install surface
mount parts and also reduces power consumption.

When using the higher power DRA818/SA818 RF board, keep in mind that the modules power
requirement, when transmitting, is quite high; it is, after all, a 500mW/1000mW transmitter.
Do not expect a LR22 9V alkaline battery battery to supply enough current to turn on the
DRA818/SA818 RF board, much less being able to transmit. Using the DRA818/SA818 also
drives the regulator selection; it must be capable of delivering enough current for proper opera-
tion.

58

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.10.1 Battery
Recommended configuration is a six cell AAA configuration. Cells arranged
as a 3x2 array will comfortably fit in the case listed in the build documents.
The 5V regulator is, however, capable of dealing with a higher input volt-
age than the nominal 9V provided by a six cell pack. The battery conver-
sion coefficients may be changed using the CONF command.
Using larger cells (i.e. AA cells) or switching to 8 or 10 cells can be em-
ployed to extend the operating life or to increase the operating power.

The following peak voltages can be selected:
CONF BMON 7.5V
CONF BMON 10.0V
CONF BMON 12.5V
CONF BMON 13.5V
CONF BMON 15.0V
CONF BMON 17.0V
CONF BMON 73161

The 102-73181 boards make use of an external voltage reference of 2.5V. The 102-73161
boards make use of an internal voltage reference. This, of course, affects the conversion
coefficients.
The 102-73181-10 schematic has a table of resistor divider values for the above listed peak
voltages. If the default value (CONF BMON 10.0V) is not to be used, R35 needs to be
replaced with the targeted value.
Using an eight cell AA pack (located outside the case) would require this change and a
CONF BMON command to change the coefficients used to calculate battery voltage.

CONF BMON 7.5V
This set of conversion coefficients is provided to allow a low voltage pack to be used. In
particular, a 2-cell LiPo pack.
R35 is populated with a 10.0K Ohm resistor (R36 is always 4.99K Ohm).
Any of the higher voltage selections (for R35) may be used with a slight reduction in
resolution of the reported voltage.

CONF BMON 10V
This is the default set of conversion coefficients that supports a 6 cell pack.
R35 is populated with a 15.0K Ohm resistor.
This provides maximum resolution when measuring a 6-cell pack.

59

ICARC FOX Transmitters: 102-73181 KC0JFQ

CONF BMON 12.5V
This set of conversion coefficients are used to operate with an 8 cell pack.
R35 is populated with a 20.0K Ohm resistor.
When the fox transmitter has R35 changed to a new value, the conversion coefficient
selection always matches the R35 value (not the actual pack attached to the transmit-
ter).

CONF BMON 13.5V
This resistor selection is a better fit for operation with an 8 cell pack. This keeps
the voltage at the input to the A/D below 2.5V when a fresh battery pack is installed.
R35 must be repopulated with a 21.5K Ohm resistor.
When the fox transmitter has R35 changed to a new value, the coversion coefficient se-
lection must match the R35 value (not the actual pack attached to the transmitter).

CONF BMON 15V
This set of conversion coefficients are used to operate with a 10 cell pack.
R35 is populated with a 24.9K Ohm resistor.
As above, when the fox transmitter has R35 changed to a new value, the coversion coef-
ficient selection follows R35. transmitter).

CONF BMON 17.0V
This resistor selection is a better fit for operation with an 10 cell pack. This
keeps the voltage at the input to the A/D below 2.5V when a fresh battery pack is in-
stalled. The voltage at the A/D input is a bit high for the CONF BMON 15V values
when using a 10-cell pack.
R35 is populated with a 28.7K Ohm resistor.
When the fox transmitter has R35 changed to a new value, the coversion coefficient se-
lection must match the R35 value (not the actual pack attached to the transmitter).

CONF BMON 73161
This selection is used with the 102-73161 boards. Although the resistor values shown in
the schematic are the same as the 102-73181 boards, the zNEO internal voltage refer-
ence is used.

BATR I
Vertsion 3.91 and later.

This command was added to the BATtery Report command to dump the coefficients
table. A recalculation in December of 2024 changed some target values and recalculated
the coefficients table.

60

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.10.2 Power Plot

The addition of the BATR command allows for the collection of battery data when the trans-
mitter is in operation. This example is a typical transmitter with a new battery and a power am-
plifier daughterboard that produces about 60mW. The cycle is 360 seconds (6 minutes) with a 55
second active time.

Figure 4.26: Power Plot

A BATR command is placed at the begining of the (S0=) sequence, before the power amplifier
is powered (i.e. before the BEGN command). A second BATR command is placed somewhere
in the active message (between the BEGN command and the DONE command) to catch the
current draw when transmitting (i.e. the power amplifier is powered and actively transmitting
RF).
The Fox Transmitter is then connected to a dummy load and to a host computer to log the activ-
ity (that is coming out on the command port) and left on until the battery collapses.
When the battery voltage, during an active state, drops below what the regulator will handle,
expect the data collection process to falter.
The VX7805-500 data sheet indicates a minimum input voltage of 6.5V with the higher current
devices indicating the need for a higher minimum input voltage.

61

ICARC FOX Transmitters: 102-73181 KC0JFQ

The battery report appears something like the following:
sts47,00* Handler_BATR (cmd_battery.c*) V=7.840[0324] I=115.7[00ED] 5=5.012[0202] State-T3 0.01 Sec

The handler name uniquely identifies the battery state report (i.e. the Handler_BATR is
unique to the BATR command) and provides the voltage, current, and transmitter state.
The transmitter state will be either State-T0 to indicate and idle system or State-T3 to indi-
cate the system is transmitting.
The logging program is expected to provide a timetag as the data is collected (as is the case with
the halo_term utility used by the author) when running software versions prior to V3.90. V3.90
update adds a timetag (in decimal seconds) to the report eliminating the need for the logging
software to deal with this.
We monitor the 5 volt regulator channel to see when the regulator falls out of regulation. The T3
state reading is plotted, this being when the 5 volt regulator is under load (near dropout).
The zNEO runs off of the 3.3V rail, so it will continue to operate until the 3.3V regulator drops
out (the datasheet suggests that this is around 4.5V to 4.8V). We can then look for the regulated
5V line to drop to determine the end voltage point and work back towards the warning voltage to
use in the battery reporting commands.

4.10.3 Fuse

The 210-73181-10 board is provisioned with an 800mA fuse. This is packaged in a surface mount
0603 package.
The fuse is provided as part of the reverse polarity protection circuit. It should not ever be over-
loaded by the electronics. Replacement requires removal of a small surface mount part on the
bottom side of the circuit board near the power switch. Investigate and correct any problem
on the circuit board if the fuse ever requires service.
If the battery is connected backwards, D4 becomes forward biased which limits the reverse volt-
age to a diode drop (about 700mV) as the protection fuse, F1, is overloaded and pops. The cur-
rent sense resistor R55 is temporarily stressed, but the fuse is expected to blow in a few hundred
milliseconds.

4.10.4 Power Switching
Starting with the 102-73161-25 board revision, a power switch isolates the 5V and 9V rail to
the daughter board. On board revisions 102-73181-5 and earlier, the switch is controlled by the
TX_ENA net on port pin PH3.

The 102-73181-10 board seperates the power control function from the TX_ENA net, mov-
ing it to DB_PWR net on port pin PD7. A configuration resistor, R68, allows the power
switch function to be selected to use TX_ENA or DB_PWR. For proper operation of the
102-73181-36 daughter board (i.e. the DRA818 VHF tranceiver module), the power switch
must be independant of the TX_ENA net as the TX_ENA net is used on that daughter
board to control the PTT function. Asswerting the PTT pin on the DRA818 as power is ap-
plied prevents the module from functioning correctly.

The simple RF amplifier modules, such as the 102-73181-35 or 102-73161-28, are not affected
by having power and RF applied at the same time. They will tolerate R68 in either configura-
tion. Do take note, however, that the power control is best left on the DB_PWR net as this
is universally compatible with all RF modules.

62

ICARC FOX Transmitters: 102-73181 KC0JFQ

The schematic for the 102-73181-10 board indicates that R68 would be installed to control
U81/U91 from the TX_ENA net. Software development after the 102-73181-10 boards were
fabricated indicates that R68 needs to be installed in the 2-3 position (i.e. to the left).

Figure 4.27: R68

The DRA818/SA818 modules will not have sufficient startup timer if R68 is installed to the
right (the 1-2 position under the reference designator). If you encounter difficulty with the
DRA818/SA818 modules, verify that R68 is installed to the left (the 2-3 position).

4.11 Host Interface

A host system is used to load the operating schedule and audio files. The board may be config-
ured with a simple FTDI USB UART or with a 3.5mm stereo jack to connect to an FTDI TTL-
232R-3V3-AJ serial cable. The USB connector and the serial connector are both oriented ver-
tically on the 102-73181-5 to allow the battery access panel to be oriented toward the end where
the antenna connector is located. This provides access to the USB port or 3.5mm jack when the
battery compartment door is removed. The battery door does not allow to access a 6-cell AAA
pack, so flipping things around should give convenient access to the serial port when preparing a
102-73181-5 unit for a hunt.

63

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.28: TTL-232R-3V3-AJ

Figure 4.29: TTL-232R-3V3-AJ Pinout

The 102-73181-10 units move the 3.5mm serial port to the position vacated by the time network
connector. This allows the 102-73181-10 board to mount to the shallow side of the case which is a
bit more convenient.
The 102-73181-10 revision reassigns the handie-talkie serial port. It is now shared with the
daughter board and uses the R1/R9 network to keep transmit and receive data on the correct
pins. This isolates the handie-talkie from the zNEO to avoid static damage to the expensive 65
pin package.

64

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.12 Configuration Order

Configuration commands are somewhat order sensitive. A list of available CONF commands
may be obtained by entering the CONF command with no arguments. The commands are de-
tailed in section 10.2.8 on page 172.

The callsign and nickname should be located near the beginning of the INI= file. This estab-
lishes the identity of the unit for all commands that require parameter substitutions that follow.
Following RF hardware selection (for example: CONF SI5351), the configuration bits are pre-
set to appropriate values for the selected RF subsystem. Additional CONF commands may be
issued to alter the RF configuration bit settings when required. The commands to do this are in
the SYNTH group.
Any additional changes to the configuration bits come in the RADIO, AUDIO and ANALOG
groups.
An external walkie talkie and the DRA818/SA818 modules may be commanded using the sec-
ondary serial channel. You may find it necessary to alter some of the RADIO settings when using
an external walkie talkie.

4.13 External Radio

14-pin header: J6.
In addition to the 102-73181-36 RF daughter board, hardware is provided for controlling a hand
held handie-talkie.

Table 4.4: J6 pinout and Function Table
14
pin

Signal
Name

Signal
Description

1 RXD0 Serial Traffic from external radio
2 TXD0 Serial Traffic to external radio
3 GND circuit ground
4 VCMO_filtered filtered and DC isolated VCMO_TONE
5 GND circuit ground
6 VCMO_atten filtered VCMO_TONE
7 GND circuit ground
8 VCMO_TONE PWM for voice operation

simple square wave for CW
9 GND circuit ground
0 PTT Push-To-Talk negative true

JP5 to enable pull-up
11 VBATT switched battery before I-sense
12 V9.0 switched battery after I-sense
13 SWITCH connected to zNEO PB4

analog input
14 PHOTO_CELL connected to zNEO PB5

analog input

65

ICARC FOX Transmitters: 102-73181 KC0JFQ

Note that the pin assignments are a super-set of the previous connectors on the 102-73161
boards. It would be possible to install a smaller connector on the board to accommodate an ex-
isting configuration, eliminating the need to rebuild external cables.
There weren’t any board built and configured for external radio operation, so this is probably a
moot point.

4.14 MASTER Jumper

The MASter jumper presents an interesting dilemma to the software. The 64 pin package used
on the 73181-10 revision is one pin shy of matching up with the 73181-5 and earlier revisions.
This problem pin is used to inspect the state of the MASter jumper.
The software must deal with this problem. The 64 pin package is missing the PF6 port bit and
the hardware doesn’t attempt to pretend that the PF6 exists internally. To remedy this, the soft-
ware needs a method to detect which processor chip is present on the circuit board.
Fortunately, the ZiLOG engineers buried a device part number in the silicon that can be accessed
by the software. Embedded in this part number is the package type, allowing the software to eas-
ily determine when we are running on an older hardware revision (80 pin package).
The software copies the hardware part number from a reserved area of memory to SRAM and
prints the resulting string as the system starts following a power-on or reset. The code that deals
with the MASter jumper can inspect the saved part number and get jumper status from the ap-
propriate port bit.

4.15 Processor

The zNEO processor is mechanically overkill in the 80 pin pin packages, but the 64 pin package
is just about right (17 unused pins) and it is readily available.
As of 2023, the 80 pin package is like hens teeth. This drove the 102-73181-10 update to make
use of the 64 pin package that is more available (at least as this document is being produced).
The only difference between the 64-pin and the 80-pin package that affects the design is the pin
used to detect the MASTER jumper. The 102-73181-5 uses the PF6 bit and the 102-73181-10
uses the PF7 bit. The zNEO GPIO ports provide for a configurable pull-up that is used by the
software to make the MASTER detect insensitive to the use of PF6 or PF7.
The zNEO processor is a 16 bit derivative of the ZiLOG Z8. The zNEO has an architecture that
is better tailored for use with compilers. The zNEO chip is available with 128KB flash and 4KB
SRAM. Although smaller memory footprint devices are available, the current software is a tight
fit for the 129KB footprint.
The zNEO has a generous complement of peripheral devices that provide adequate resources for
implementing the control system for the FOX Transmitter.

4.15.1 Program Structure

The operating software consists of multiple foreground interrupt routines that handle periodic
activities and a background loop that processes commands and the background schedule. The in-
terrupt routines handle incoming serial traffic (i.e. foreground commands), regular interrupts (i.e.
the 10mS RTI tick that tracks time) and the periodic interrupt for sending CW traffic.

66

ICARC FOX Transmitters: 102-73181 KC0JFQ

Command Loop

This is the control loop that controls the system.
The control loop looks for:
1.

Command traffic from the control port (i.e. the 3.5mm serial port).
2.

A scheduling point (i.e. it is now time to run a sequence).
At the bottom of the control loop the processor is halted to reduce power consumption. The pro-
cessor resumes execution following the next interrupt (from any source) with control returning to
the top of this simple loop.

Command Dispatch

Command dispatch takes the 4 character command stem and performs a table lookup searching
for a matching stem. If the match is successful the associated command handler is called to de-
code and execute the command.

Listing 4.1: Main Loop Command
823whi le (1) {
824//
825// c l e a r UART_RX0_Flag be f o r e p r o c e s s i n g commands
826// because we ’ re about to c l e a r the read b u f f e r
827// ANY t r a f f i c that comes in w i l l abort whatever
828// i s a c t i v e and return c o n t r o l to t h i s main loop . . .
829UART_RX0_Flag = 0 ;
830//
831j = process_commands () ;
832r t i=TIMER_get_time(&seconds) ;
833//

Start of the main loop.
Fetch complete line from serial interrupt handler (line 831).
Log the current time so we can document command execution time (line 832).

67

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 4.2: Main Loop Schedule
864//
865// Examine the schedu le and run program i s i t ’ s time !
866// " schedu le name" = FOX_Schedule () ;
867// r e tu rn s the schedu le name , a l l ready f o r
868// the command p r o c e s s o r
869//
870i f ((ctemp=FOX_Schedule_Loop(fox_conf ig . RUN_Start))) {
871i f (fox_conf ig . Conf igurat ion_Flags & FOX_CONFIG_DEBUG_SCHED) {
872s p r i n t f ((char ∗) uart_temp_buffer , R"DBG %s/%d " , Format_Main

↪→ [0] . mat , __LINE__) ;
873UART_write_USB(uart_temp_buffer) ;
874s p r i n t f ((char ∗) uart_temp_buffer , R" %ld .%02d0 " , seconds , r t i)

↪→ ;
875UART_write_USB(uart_temp_buffer) ;
876s p r i n t f ((char ∗) uart_temp_buffer , R"RUN %s " , ctemp) ;
877UART_write_USB_CRLF(uart_temp_buffer) ;
878}
879COMMAND_command_load(ctemp , 0) ;
880}

Line 870 tests for an active scheduling point. If there is an active schedule that needs attention,
the command parser is called with the name of the schedule to run the commands in the specified
schedule file.

Listing 4.3: Main Loop Halt
902//
903// ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗
904// Nothing Happening . . .
905//
906asm ("\tHALT") ;
907} // whi le (1) {

At the end of the loop, we run the zNEO HALT instruction to stop most activity in the zNEO
until the next interrupt occurs.

Command Dispatch

This is a short extract from the command dispatch table

68

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 4.4: Command Dispatch Table
105NULL} ;
106
107
108//
109// COMMAND Dispatch Table :
110// connect command mnemonic to the rou t in e that handles i t . . .
111// Count from 1 (i . e . entry ZERO i s a NULL entry)
112// Command Index i s the p o s i t i o n in t h i s t a b l e
113// t h i s i s a l s o the s t a t u s returned when the command execute s
114// The command bu f f e r , in i t s e n t i r i t y ,
115//
116// s t r u c t COMMANDS3 {
117// BYTE command_type ;
118// char ∗command_mnemonic ;
119// char ∗command_help_args ;
120// char ∗command_help_text ;
121// i n t (∗ command_execute) (i n t s t s , char ∗ input_buf , char ∗

↪→ status_buf , i n t ∗ arg1) ;
122// } ;
123///
124rom s t r u c t COMMANDS3 command_table [] = {
125// command−type mnemonic args he lp text

↪→ handler address
126// ∗∗ l i m i t s t r i n g l ength ! ! ! ∗∗∗
127{COMMAND_TYPE_NULL, NULL, NULL, NULL,

↪→ &Handler_NULL} , //
128//
129//−−−//

↪→
130//
131{COMMAND_TYPE_SYS, R"HELP" , NULL,
132R" Help Menu and Items " ,

↪→ &Handler_HELP} ,
↪→ //

133{COMMAND_TYPE_SYS, R"HELP" , R"< s t r i ng >" ,
134R" matching help items " ,

↪→ &Handler_HELP} ,
↪→ //

135{COMMAND_TYPE_SYS, R"ONCE" , R"<name>" ,

The comments in the code describe the table organization.
First command, with an index of zero, is used as a not found condition.
The help text is buried in this table.

69

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 4.5: Command Dispatch Table Search
398//
399re turn d e l t a ;
400}
401i n t COMMAND_command_index(char ∗mnemonic) {
402i n t index ;
403index = 1 ; // 0 th . element i s NULL ! ! ! !
404whi le (command_table [index] . command_mnemonic) {
405i f (! strncmp (command_table [index] . command_mnemonic , mnemonic , 4)) {
406re turn index ;
407}
408index++;

Scanning the dispatch table for matching command mnemonic.
Line 400 starts the scan after the 0th. (NULL) element.
Line 401 test for end of table.
Line 402 compares the provided command with the table entry.

Listing 4.6: Command Dispatch InTel HEX
454//
455//
456//
457i f (i b u f [0] == ’ : ’) {
458s p r i n t f (Stat , R" s t s %02d,%02d∗ %s " ,
459COMMAND_TYPE_FLASH_HEX,

Special case for a leading colon. The colon is expected to indicate a HEX record.
Line 457 is the call to decode and save the contents of the HEX record.

Listing 4.7: Command Dispatch Execute
582UART_write_USB_CRLF(uart_temp_buffer) ;
583}
584#e n d i f
585//

Finally, on line 585, we call the handler for the matched command stem.
The compiler knows how to correctly build the call frame so we can use a simple dispatch table
rather than a compound if statement (which are dog slow).

4.15.2 Software Toolchain Overview

ZiLOG provides a software development tool-set with a c compiler that is used to generate the
applications software.
The compiler and linker are both able to run in a Linux environment using WINE. To program
the device the the ZDS II IDE is required. Running under WINE limits programming to the
Ethernet Smart Cable, but is does work under WINE.

70

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.15.3 zNEO Programming

A standard 6-pin header on the board allows the zNEO firmware to be updated.
There is no provision for programming through the USB port (that is not typically populated).
When using the ZiLog tools under WINE, the Ethernet Smart Cable is preferred to avoid prob-
lems configuring a USB Smart Cable or Serial Smart Cable.
The tools can, of course, be used with Windows. This opens up the ability to also make use of
the USB Smart Cable.

The c-compiler supplied by ZiLOG has hardware-specific accommodations for the small SRAM
footprint of the zNEO processor. In particular, all data that is static in nature (i.e. will never be
written to), such as text strings, must be declared ROM resident. A declaration qualifier, rom, is
used to keep data items and structures resident in the ROM. Text strings are declared with an R
precedent:

sprintf(R"format string", ...);

Inspecting the linker map should show no NEAR_TEXT allocations in user-written code sec-
tions. The only occurrences should be in library code. An example of the only occurrence of
NEAR_TEXT (all 16 bytes of it) in the V3 software is as follows:

Module: common\udtof.c (Library: fpsd.lib) Version: 1:0 08/07/2017 15:52:55
Name Base Top Size
--------------------------------------- ----------- ----------- ---------
Segment: CODE C:0167CC C:016A61 296h
Segment: NEAR_BSS R:FFB59C R:FFB5A7 ch
Segment: NEAR_DATA (was NEAR_TEXT) R:FFB7F1 R:FFB800 10h

Careful attention to this has kept the available stack in the V3 software to almost 2K bytes (or
half of the available SRAM).

4.16 FRAM and FLASH
The 102-73181 boards have two serial memory devices, both in 8-pin SOIC packages. The 102-
73181-5 and later boards will (barely) accommodate wide packages.
The 102-73161-25 board has a single location for a serial memory device. This would imply that
both audio and commands live together in one large ($$$) device.

4.16.1 Device Detection

The software has a device table that covers a reasonable number of FRAM and FLASH devices.
The detection scan assumes that each of the two devices will respond to a JEDEC-ID request
and return a three byte ID field.
The FRAM position (the IC labeled U3) will default to a 64Kb device if no JEDEC ID is found
or no device is detected.
This implies that the minimum size FRAM is, therefore, 64Kb. If the device is defective or sim-
ply not present, you will find it rather difficult to save commands.

71

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.16.2 FRAM

The software assumes the minimum size of an FRAM device (in location U3) is 64Kbits. Small
devices that do not report a JEDEC ID will default to 64Kbit parameters.
Although an FRAM smaller than 64Kb can be fitted to the board without knowledge of the de-
vice size, the software will not deal with an address wrap-around and happily overwrite the be-
gining of the device when more than 256 records are stored in the device.
Thw wrap-around point moves closer to the begining as the device gets smaller. So do take note
from this discussion that a smaller device will appear to work, but will behave badly should it be
over-filled.
Therefore the software needs a working device in location U3 or it won’t be capable of operating
in a hunt.

4.16.3 FLASH

No assumptions about the FLASH are made. All Flash devices must report JEDEC ID in order
to be detected and have the appropriate access methods enabled.

The FLASH device (in location U12) holds audio data and would normally be loaded using the
InTel HEX file interface. For this to work efficiently (and at a reasonable speed) a page-write de-
vice must be used here.
Byte at-a-time or two byte at-a-time devices may operate if the hex-file loader inserts appropriate
inter-line delays during the load operation.

Buffer constraints in the zNEO limit the maximum InTel HEX record to 32 data bytes. This will
result in a data record of 80 bytes when using the audio utility tools. A larger data payload will
overflow the input buffer in the zNEO.

The entire audio file system must be loaded following a device erase (sector erase is not tested as
of V3.64).

4.16.4 EEPROM

Can we deal with EEPROM, or do we even need to think about this type of device?
For this discussion, I will consider the STMicroelectronics M95P08. This is an 8Mb device in an
8 pin SOIC package.

72

ICARC FOX Transmitters: 102-73181 KC0JFQ

Page Size is 512 bytes, so we are within limits for out 32 byte logicl page used in the operating
software.
This supported SPI modes appear to be compatible with the FRAM and FLASH devices we are
currently using.
The status register has the WIP (Write In Progress) bit to test for programming completion.
The device supports several bulk erase commands.
The device supports the (FLASH_COMMAND_WRITE 0x02) command. This writes one
to 512 bytes. The write block must be page aligned (all FLASH require this).
This performs an erase operation on the affected bytes before the program step is performed.
This feels like the FRAM but with a slow write cycle time.
The device supports the (FLASH_COMMAND1_JEDECID 0x9F) command. It returns a
standard code (0x20, 0x00, 0x14).
The device does not support the (FLASH_COMMAND4_RDID 0x90) command.

It appears this device should work with an update to the device table.

So, in the V4.11 release, we add an EEPROM device that decodes like a FLASH device. It will
show up as EEPROM from the command line, but is handled jsut like a FLASH device inter-
nally.
It will respond to an erase command, but this isn’t strictly necessary.

This provides for a large audio file system for the older 102-73161-25 boards while still being able
to quickly update the commands.
The audio file system must start after the area reserved for commands. Nominally, you will re-
serve one block (64K) for commands.

4.16.5 FLASH and FRAM JEDEC IDs

There is a somewhat generous device recgonition table built into the base software that recgo-
nizes many FRAM and FLASH devices.

Listing 4.8: JEDEC table
1s ts41 ,00∗ Write−Mode JEDEC−ID S i z e Page Sctr Manufact Device
2s ts41 ,00∗ FLASH_PAGE 20.8A.17 64M 256 64K Micron MT25QL64
3s ts41 ,01∗ FLASH_PAGE EF. 7 0 . 1 7 64M 256 64K Winbond W25Q64JV
4s ts41 ,02∗ FLASH_PAGE 2 0 . 7 1 . 1 7 64M 256 64K Micron M25PX64

Devices 64Mb and above.
The FLASH_PAGE32 indicates that these devices require a 32 bit address. They operate just
like all the other FLASH_PAGE, other than the added address byte.

73

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 4.9: JEDEC table 5
5s ts41 ,03∗ FLASH_PAGE 2 0 . 7 1 . 1 6 32M 256 64K Micron M25PX32
6s ts41 ,04∗ FLASH_PAGE 9D. 1 3 . 4 6 32M 256 64K ISSI 25CQ032
7s ts41 ,05∗ FLASH_PAGE 6 8 . 4 0 . 1 6 32M 256 64K BYTe BY25Q32
8s ts41 ,06∗ FLASH_PAGE 1F. 8 6 . 0 1 16M 256 64K Renesas AT25SF16
9s ts41 ,07∗ FLASH_PAGE C2 . 2 3 . 1 5 16M 256 64K Macronix MX25V16
10s ts41 ,08∗ FLASH_PAGE C2 . 2 0 . 1 5 16M 256 64K Macronix MX25V16
11s ts41 ,09∗ FLASH_PAGE 2 0 . 7 1 . 1 5 16M 256 64K Micron M25PX16
12s ts41 ,10∗ FLASH_PAGE 9D. 1 3 . 4 5 16M 256 64K ISSI 25CQ016
13s ts41 ,11∗ FLASH_PAGE 6 8 . 4 0 . 1 5 16M 256 64K BYTe BY25Q16
14s ts41 ,12∗ FLASH_PAGE 2 0 . 7 1 . 1 4 8M 256 64K Micron M25PX80
15s ts41 ,13∗ FLASH_FRAM C2. 2E.03 8M 1 0K Cypress CY15B108Q
16s ts41 ,14∗ FLASH_PAGE 2 0 . 7 1 . 1 4 8M 256 64K Micron M25PX80
17s ts41 ,15∗ FLASH_PAGE 9D. 1 3 . 4 4 8M 256 64K ISSI 25LQ080
18s ts41 ,16∗ FLASH_PAGE 6 8 . 4 0 . 1 4 8M 256 64K BYTe BY25Q80
19s ts41 ,17∗ FLASH_FRAM C2 . 2 6 . 0 8 4M 1 0K Cypress CY15B104Q
20s ts41 ,18∗ FLASH_FRAM 0 4 . 4 9 . 0 3 4M 1 0K Fuj i t su MB85RS4MT
21s ts41 ,19∗ FLASH_PAGE 9D. 7F. 7E 4M 256 64K ISSI 25LD040
22s ts41 ,20∗ FLASH_PAGE 9D. 7E. 7F 4M 256 64K ISSI 25LD040
23s ts41 ,21∗ FLASH_PAGE 9D. 7E.FF 4M 256 64K ISSI 25LD040

Devices 4Mb to 32Mb.
The FLASH_FRAM devices at this end of the list are generally quite expensive.
Avoid using the FLASH_AAI devices, they may not provide adequate write performance, par-
ticularly with the binary loader.
The FLASH_PAGE device toward the top of the list provide generous space for audio. The
4Mb devices provide over 2 minutes of audio at the standard 4KHz sample rate.

74

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 4.10: JEDEC table 24
24s ts41 ,22∗ FLASH_FRAM C2. 2A.64 2M 1 0K Cypress CY15B102Q
25s ts41 ,23∗ FLASH_FRAM C2. 2A.60 2M 1 0K Cypress CY15B102Q
26s ts41 ,24∗ FLASH_FRAM C2. 2A.04 2M 1 0K Cypress CY15V102Q
27s ts41 ,25∗ FLASH_FRAM C2. 2A.00 2M 1 0K Cypress CY15B102Q
28s ts41 ,26∗ FLASH_FRAM 0 4 . 4 8 . 0 3 2M 1 0K Fuj i t su MB85RS2MTA
29s ts41 ,27∗ FLASH_FRAM C2 . 2 5 . 0 8 2M 1 0K Cypress FM25V20A
30s ts41 ,28∗ FLASH_FRAM C2 . 2 5 . 0 0 2M 1 0K Cypress FM25V20
31s ts41 ,29∗ FLASH_PAGE 7F. 9D.22 2M 256 64K ISSI 25LD020
32s ts41 ,30∗ FLASH_FRAM C2 . 2 4 . 0 0 1M 1 0K Cypress FM25V10
33s ts41 ,31∗ FLASH_FRAM C2 . 2 4 . 0 1 1M 1 0K Cypress FM25VN10
34s ts41 ,32∗ FLASH_FRAM AE. 8 3 . 0 9 1M 1 0K Lapis MR45V100A
35s ts41 ,33∗ FLASH_PAGE 7F. 9D.21 1M 256 4K ISSI 25CD010
36s ts41 ,34∗ FLASH_FRAM 0 4 . 2 7 . 0 3 1M 1 0K Fuj i t su MB85RS1MT
37s ts41 ,35∗ FLASH_FRAM 7F. 2 7 . 0 3 1M 1 0K Fuj i t su MB85RS1MT
38s ts41 ,36∗ FLASH_FRAM C2 . 2 3 . 0 0 512K 1 0K Cypress FM25V05
39s ts41 ,37∗ FLASH_FRAM 0 4 . 2 6 . 0 3 512K 1 0K Fuj i t su MB85RS512T
40s ts41 ,38∗ FLASH_FRAM 7F. 2 6 . 0 3 512K 1 0K Fuj i t su MB85RS512T
41s ts41 ,39∗ FLASH_PAGE 7F. 9D.20 512K 256 4K ISSI 25CD512

Devices 512Kb to 2Mb.
The FLASH_FRAM devices in the middle of the list will still be expensive.
Do not use the FLASH_AAI devices, they are deprecated as they didn’t provide adequate
write performance as they program 2 bytes at a time. These presented a problem with the binary
loader.

Listing 4.11: JEDEC table 42
42s ts41 ,40∗ FLASH_FRAM C2 . 2 2 . C8 256K 1 0K Cypress CY15B256Q
43s ts41 ,41∗ FLASH_FRAM C2 . 2 2 . 0 8 256K 1 0K Cypress FM25V02A
44s ts41 ,42∗ FLASH_FRAM 0 4 . 2 5 . 0 3 256K 1 0K Fuj i t su MB85RS256TY
45s ts41 ,43∗ FLASH_FRAM C2 . 2 1 . 0 8 128K 1 0K Cypress FM25V01A
46s ts41 ,44∗ FLASH_FRAM C2 . 2 1 . 8 8 128K 1 0K Cypress CY15B128Q
47s ts41 ,45∗ FLASH_FRAM 0 4 . 0 3 . 0 2 64K 1 0K Fuj i t su MB85RS64V
48s ts41 ,46∗ FLASH_FRAM 04.7F.23 64K 1 0K Fuj i t su MB85RS64T
49s ts41 ,47∗ FLASH_FRAM C2 . 2 3 . 0 0 64K 1 0K Cypress FM25V05
50s ts41 ,48∗ FLASH_FRAM FF.FF.FF 64K 1 0K Unknown 64K FRAM

Devices less than 512Kb.
The FLASH_FRAM devices at this end of the list start to become much lower in price.
You will probably find the 128K and 256K FRAM devices much more reasonably priced while
providing a reasonably large space for storing commands.

Take special note of the device on line 55, the default device.
eThis is the assumed configuration when the devices does not respond with a valid JEDEC ID
when it is queried. Some FRAM devices lack the JEDEC ID device commands so they will be
enumerated as a 64Kb device.
This provides space for 256 commands which is typically adequate for setting up any fox hunt.
Larger devices allow for storing more complex or multiple hunt scenarios.

75

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17 RF Daughterboards

Discussions of the RF amplifiers.

4.17.1 102-73161-22: Bypass

A simple amplifier bypass card.

Figure 4.30: Amplifier Bypass Schematic

This is used to feed the synthesizer clock directly through to the LPF filter on the main board.
There are provision for imnpedance matching and attenuation on the board.

76

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.2 102-73161-24: Class-C

A simple Class-C amplifier.

Figure 4.31: Class-C Amplifier Schematic

This power amplifier board uses simple CMOS gates to provide current gain (above what the
ICS525/SI5351 can supply) and slightly increase the output power.

One 74LVC1G04W5-7 device buffers the RF Clock from the motherboard driving two
74LVC1G04W5-7 output buffers. These gates operate from the 5V rail and provide enough
current to drive 60mW into a 50Ω load.

This particular gate was selected as being the fastest 74LVC gate currently available. The de-
vice is operating at the edge of its capability in the Amateur 2M band.

Take note of the power connections for the gates on this board. The 74LVC1G04 is powered
from the 5V rail. The SI5351 will probably not provide adequate drive levels for this amplifier
to work well.

77

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.3 102-73161-29 LVDS Class-C

74LVC Power Amplifier Daughter board.

Figure 4.32: LVDS Amplifier Schematic

This power amplifier board uses a simple CMOS gate to provide current gain and slightly
increase the output power over using a 102-73161-22 bypass board. The SI5351 on the 102-
73181-5/102-73181-10 boards provide good drive to the LVDS driver on the motherboard (use
the CONF CLK2 to select the LVDS clock).

U1, U2, and U3 are all powered from the 5V rail.
The 5V rail is switched on the motherboard such that the board is only powered when trans-
mitting.

One FIN1002 device buffers the differential clock from the motherboard driving a single
74LVC1G04W5-7 that shifts the 3.3V logic level to a 5.0V logic level. The 5V level then
drives two 74LVC1G04W5-7 output buffers. These gates operate from the 5V rail and provide
enough current to drive about 20mW into a 50Ω load.
Observe that the RF carrier signal, generated by the SI5351, arrives as a differential signal on
the connector. Also this differential signal has a pair of dedicated pins. This requires that the
motherboard provide the RF carrier signal as a differential signal. This being effected by a
FIN1001 device on the motherboard (U11).
It should be obvious that U11 on the motherboard must be populated when using an RF
daughterboard with a FIN1002 receiver. The system will happily configure for operation with
this daughterboard and produce no putput should U11 be left off the motherboard!

78

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.33: LVDS Amplifier

The output pin of U1 is located equidistant between the input pins of U2 and U3 to keep the
trace lengths equal.
The output traces from U2 and U3 are also equidistant from the junction near R2.
R2, R3, and R4 form a PI network that may be used to attenuate the signal. These parts may
also be used to match the output of the drivers to the filter on the motherboard.

79

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.4 102-73161-28: MMIC

MMIC Power Amplifier Daughter board.

Figure 4.34: Class C amplifier using ADL5536 or similar.

This power amplifier board makes use of a variety of MMIC amplifiers that appear in the
SOT89 package. Analog Devices provides several examples, such as the ADL5536 and
ADL5544. The SI5351 provides adequate drive for this class of devices to produce ade-
quate output levels (use the CONF CLK0 to select the unbuffered clock).

C3, C5, and L2 form a matching network that may be used to match the incoming sig-
nal (RF-IN) to the 50Ω input of U6, although the SI5351 avoids having to populate the
matching network. You will notice the schematic shows values for these parts, which is in-
correct for the SI5351 where C3 and C5 are not populated and L2 is installed as a short.

80

ICARC FOX Transmitters: 102-73181 KC0JFQ

R1, R2A and R2B form an attenuator to reduce the amplitude of the incoming signal, if
required. Our schematic shows R1 a 0Ω as we are not using this feature. Output levels can
better be selected by choosing a device that produces the desired output level.
A missing DC blocking cap (C2) has been added to the artwork, superceding the 102-
73161-23 artwork. This board is otherwise identical to the earlier board.

The output matching network is not needed as the nominal output impedance of all of this
type of amplifiers are 50Ω, so C21 is installed across one pad of C21 and one pad of C25 to
bypass the network.

The Be Rex BG15A may be used to produce a bit less than 50mW. The Be Rex BIF7 may
be used to produce close to 100mW.

Note that most of the available MMIC chips expect no more than 5V to be provided at the
output pin to power the device. R37 must be installed in position 1-2.

Figure 4.35: 73161-28 MMIC Amplifier Board

81

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.5 102-73181-28: MMIC Chirp

The MMIC amplifier for chirping applications.

Figure 4.36: MMIC CHiRP Amplifier Schematic

This is a rework of the 102-73161-28 amplifier specifically to enable interrupted carrier op-
eration. There are a few package selection changes for some of the inductors to make device
selection a bit easier. This amplifier has been built and tested to produce between 50mW and
100mW (typically about 60mW).
This amplifier may be built up without the power switching function making it functionally
identical to the 102-73161-28 amplifier. Installing JP1 will bypass the power switch.

82

ICARC FOX Transmitters: 102-73181 KC0JFQ

Mechanically, this board is larger than the simple RF ampifiers. It requires the third (smaller)
mounting standoff (like the 102_73181_36 DRA818/SA818 board).
This rework adds the power switch (U1) to allow control of the power delivered to the MMIC
amplifier. This emulates the operation of the DRA818 daughterboard where the PTT (push-
to-talk) control is seperate from the PD (power down) control. The remainder of the circuit is
essentially the same as the 102-73161-28 design.

The power jumper may be used on the motherboard (i.e. jumper J7) to move power con-
trol exclusively to the daughterboard. This isn’t necessary; the jumper (J7) may be left off
the motherboard to allow convenient interchange of different RF modules and this board will
function normally.

The default position of R3 is connecting the TX_ENA net to the control pin (U1-5) on the
power switch. This is the PTT* (push-to-talk) signal

A soft-start network, consisting of R2, R4, and C15, can have values selected to control the
dV/dT of the circuit.
The updated schematic uses values of 10KΩ, 470Ω, and .01uF to achieve a rise time of 10uSec.
These values keeps L15 from ringing at turn-on.

Take note of the fact that the switch simply removes power from the amplifier (U6) but does
not, of course, attenuate the incoming RF signal. This low level carrier (below 1mW) will still
escape the enclosure as long as the SI5351 is generating a clock (i.e. until the DONE com-
mand occurs).

83

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.37: MMIC Amplifier Board

When a receiver is close to the fox transmitter, it can detect the residual carrier should the
receiver squelch control be set to near open.
Removing power from the amplifier (U6) does reduce power draw considerably, thereby ex-
tending battery life.

To eliminate the on-boarxd switching function, do not populate the following: U1, R2, R3,
R4, R5, C8, and C15.
Install a wire jumper in position JP1.
With this alteration, the board functions exactly like the 102-73161-28 amplifier board. You
will notice that this schematic shows values for C5 and L2 which is incorrect for the SI5351,
L2 shold be installed as a short. This assumes, of course, we are dealing with a 50Ω system.

Note that all of the 50Ω MMIC devices shown on the schematic expect no more than 5V to be
provided to power the device. R37 must be installed in position 1-2.

84

ICARC FOX Transmitters: 102-73181 KC0JFQ

There are a few 75Ω MMIC amplifiers that operate at higher voltages, nominally 8.4V, which
is within the operating voltage of a 6-cell pack. Can we produce higher output power using
these amplfiers?

Figure 4.38: Matching network values 50Ω

Figure 4.39: Matching network values 75Ω

The SI5351 datasheet indicates that when the output drive strength is set to 8mA, the out-
put impedance is abount 85Ω. There is an impedance matching network of the 102-73181-28
board that we can use to transform the SI5351 output impedance to the 50Ω expected by the
MMIC amplifier. This should allow the SI5351 to provide enough drive to be able to produce
about one hundred milliwatts.
Both the 102-73161-28 and then 102-73181-28 boards have pads for matching networks on ei-
ther side of the MMIC. The 102-73181-28 board is derived from the 102-73161-28 design so
the reference designators match. The matching network discussion applies to both boards.

85

ICARC FOX Transmitters: 102-73181 KC0JFQ

Assume the SI5351 output is configured with 8mA drive to produce a 50Ω output impedance.
We will need to match the 75Ω input impedance of the MMIC (which is a 75Ω CATV ampli-
fier). This is accomplished by populating the L2 position with a 39nH inductor and the C5
position with a 10pF capacitor.
The output filter on the motherboard assumes 50Ω which should match up with a 50Ω rubber
ducky antenna. We probably do not want to change parts on the motherboard as this makes
it incompatible with other amplifiers.

We do have another matching network (C22, C24, and L3) at the output of the MMIC that
we can use. Here we use the same matching network, but in reverse. Populate the L3 position
with a 39nH inductor and the C22 position with a 10pF capacitor. C21 will have a 0Ω resistor
and C25 can then be populated with the 10,000pF blocking capacitor. We place the blocking
capacitor after the matching network so that L3 is never floating.
The power selection resistor, R37, is installed in the 2-3 position to use the V9.0 net for
power. This is raw battery voltage, albeit switched, from the motherboard. We also need to
verify that U91, C93, C94, R94, C96 and C97 are populated on the motherboard to supply
battery voltage to the RF board.

86

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.6 102-73181-71: MMIC/MMIC Chirp

The higher power MMIC amplifier.

Figure 4.40: Cascaded MMIC Amplifiers

Yet another rework, this time an update to the 102-73181-28 amplifier to add a second stage
to get a bit more output power. This amplifier has been tested to produce about 135mW.
This amplifier may be built up without the power switching function making it functionally
identical to the 102-73161-28 amplifier.
Mechanically, this board is a bit larger than the 102-73181-28 board. It also requires the third
(smaller) mounting standoff
This rework adds a second amplifier stage to provide a bit more drive to the BIF7. With the
same power switching, we emulate the operation of the DRA818 daughterboard where the
PTT (push-to-talk) control is seperate from the PD (power down) control.

87

ICARC FOX Transmitters: 102-73181 KC0JFQ

As with the 102-73181-28 the power jumper may be used on the motherboard (i.e. jumper J7)
to move power control exclusively to the daughterboard. This isn’t necessary; the jumper (J7)
may be left off the motherboard to allow convenient interchange of different RF modules and
this board will function normally.
The default position of R3 is connecting the TX_ENA net to the control pin (U1-5) on the
power switch. This is the PTT* (push-to-talk) signal

The soft-start network, consisting of R2, R4, and C15, is present with the same function.
This circuit keeps L5 and L15 from ringing at turn-on.

As with 102-73181-28 the switch (U1) simply removes power from the amplifiers ((U2) and
U6) but does not, of course, attenuate the incoming RF signal. The attenuator seeen on the
102-73181-28 is no longer present.
Removing power from the amplifier ((U2) and U6) dramatically reduces power as we are deal-
ing with two amplifier stages.

The switching function is eliminated in the same manner as on the 102-73181-28 boards.

The 102-73181-71 boards keeps the pads for matching networks on the input side of the first
MMIC and on the output side of the second MMIC.
The power selection resistor, R37, is installed in the 2-3 position, same as on the 102-73181-28
board.

Figure 4.41: HI Power CHiRP

The circuit board.

88

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.7 102-73181-86 HI Power Bipolar CHiRP

The MAX2602 amplifier (two sheets).

Figure 4.42: HI Power Bipolar, Sheet 1

First stage, we use one of the standard low gain MMIC IF amplifiers to boost the level from thee
SI5351.
This is the second revision of this design. We switch over to the MP5035 switch to make use of
the over current feature.
The power to the first stage amplifier is filtered to keep RF out of the power supply.
Input matching assumes that the SI5351 is configured for maximum drive and presents with a
source impedance of 85 ohms.

89

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 4.43: HI Power Bipolar, Sheet 2

We are now on to the MAX2602 section.
We use a second switch here, in this instance to protect the system from MAX2602 overcurrent.
Filtering from the first stage to keep RF out of the supply.
M1/M2/M3 form a matching network to transform the 50Ω output of the previous stage to
match the input of the MAX2602. The datasheet doesn’t provide and estimate of the input
impedance at this frequency.
Note that the signal is DC isolated at this point to allow biasing to come from the bias network
formed from the diode in the MAX2602 package.
The bias network for the MAX2602 is formed around a diode (Q1$D) inside the MAX2602 that
is process matched and isothermal to the switching transistor (Q1$T) This network should keep
the base of Q1$T on the edge of conduction. The input signal, being DC isolated, should then
allow Q1$T and L1 top operate in Class-C mode.
M4/M5/M6 for the output matching network. Like the input network the parts are all surface
mount 0603 that can be populated with a small inductor, a small capacitor, or left open.
The output from the amplifier is DC biased. THis DC bias must be eliminated in the output fil-
ter.

90

ICARC FOX Transmitters: 102-73181 KC0JFQ

Well, it seems the author just can’t sit still.
We continue on the quest for more RF output!

Mechanically, this board is a bit larger than the 102-73181-75 board. It will also require the third
(smaller) mounting standoff.
In this iteration we will bring back the MAX2602 (Q1$T), a bipolar transistor with a bias diode
on the same substrate (Q1$D).
We add a second power switch to deal with the expected load presented by the MAX2602. The
value of C55, larger than C15, ramps up power to the MAX2602 slower than the BG11C.
Q1$D is forward biased (through R10/L6) such that the transistor (Q1$T) is just starting to con-
duct. Any input signal will drive Q1$T into conduction. The anode of Q1$D is bypassed with a
1000PF cap.
The MAX2602 is not matched to 50Ω like the previous MMIC amplifier designs, so we require
matching networks on both the input and output. The peculier synbols used in the matchingt
network allow for quick changes in the network topology, that is switching C and L parts.
The assembly drawing, 102_73181_85_pwa.pdf, shows trace cuts to allow powering the
MAX2602 separately from the the fox transmitter for development work.
If the MAX2602 is not correctly driven, it can draw excessive current that will pop the protection
fuse on the back of the Fox Transmitter motherboard.

Figure 4.44: HI Power Bipolar CHiRP (102-73181-85)

The prototype board contuinued using the SI3865 power switch. The 102-73181-86 update
switches to the MP5035 to take advantage of the current limit feature.

91

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.17.8 102-73227-11: 80M Band

It is possible to operate in the 80M band using the 102-73227-11 RF amplifier daughterboard.
This daughterboard has a simple class-C amplifier and a low pass filter appropriate for the 80M
band.

Figure 4.45: HF Amplifier and LPF

Start with the power switch.
Here we change from the SI3865 to the indicated MP5035. This change adds overcurrent pro-
tection (which was needed in the 102-73181-86 design) as well as reducing the complexity of the
soft-start feature.
We add filtering on the output of the power switch (U6) in much the smae manner as those de-
signs using the SI3865. All of the inductors use the same package, so some care must be exercised
when assembling the boards to place the them correctly.

The input section accommodates both the older ICS525 design as well and the current SI53512
design.
The SI5351 can directly generate carrier down in the lower bands, so we take a direct input
through the LVDS receiver (U4). This assumes, of course, that the motherboard has the corre-
sponding LVDS driver installed.
The SI5351 can be programmed to operate at any target frequency that you wish to operate at.

92

ICARC FOX Transmitters: 102-73181 KC0JFQ

The ICS525, on the other hand, is a much more limiting part. It is incapable of operating below
30MHz, so we need the binary counter (U2) to provide a means of allowing the ICS525 to provide
a useful reference clock.
The ICS525 is, however, still very limiting in frequency selection is you want to operate at a par-
ticular frequency.

Drive to the switching element is provided by the level shifter, U1.
By driving Q1 and Q2 at 5 volts, the universe of parts expands slightly and we also improve the
Rds characteristic slightly.

The basic amplifier topology is Class-C.
Note that C23 and C29 are not populated and that the value of L1 is not critical.
Simulations indicate that the current coming into L1 is constant and around 200mA.
The circuit will operate with only one MOSFET installed, the second being added to lower the
Rds seen by the circuit.

Operating the amplifier as Class-E.
The appropriate value of L1 will need to be calculated. C23 and C29 are provided to form the
resonant circuit. The location and value of the capacitor also need to be calculated.

Output Filter.
The on-board LPF allows this board to simply drop-in to a standard 102-73181-10 system with-
out having to change filter components on the main board.
As shown, it is populated as a 7th. order Chebyshev. Unpopulated parts positions allow configur-
ing as a 7th. order Elliptic if desired.
All inductors on the board are the same package!

This daughter board is intended to allow the base Fox Transmitter to operate down in the
80M band. The Low Pass Filter on the motherboard is transparent at these frequencies so
alternate provisions are required.
Q1 and Q2 are driven by a simple logic gate.
We duplicate the LPF topology from the main board and increase the footprint for the induc-
tors.

The power switching more-or-less functions like the DRA818/SA818 module. Power and En-
able are controlled seperately.
U6 provides a soft start capability, rather like the 102-73181-28 and 102-73181-71 amplifiers.
The ramp-up time is quite long that probably could be shortened. It does allow time for the
filter capacitors downstream of C27 to charge without drawing excessive current.
The MP5035 also has an over-current detect/lockout to try to avoid popping the battery fuse
on the main board.

93

ICARC FOX Transmitters: 102-73181 KC0JFQ

102-73161-25 Compatibility
The 102-73227-11 board is provisioned with a divider to accommodate the limitations of the
ICS525. Normally this is not populated as the SI5351 can generate a carrier clock directly
for the 80M band. For operation with the ICS525, the FIN1002 (U4) is unpopulated and the
74LVC161 (U2) is installed. The 74LVC161 provides a divide-by-16 function while sourcing its
input clock from the single-ended signal taken from the ICS525 (102-73161-25 does not source
an LVDS signal).
The ICS525 can then operate above its 30MHz minimum by using the 74LVC161 to generate
the final clock. For the ICS525, you will have to edit the external frequency table.

4.17.9 102-73181-36 DRA818 1W RF transceiver

This daughter board is the upgrade that gets if right!
The schematic is on page 39. A a board image may be found on page 40.
This final revision breaks the DRA818 PD* net from the PTT* to allow the software control
of the timing required to wake up.
The 102-73181-10 board also seperates the daughterboard power control from the PTT* net.
Again, to allow the software control of the timing .
These changes finally brought the DRA818/DRA818 module to life.
Power levels seem to be lower than advertised, but that should not present a problem for this
application.

4.18 Deprecated RF Amplifiers

RF amplifiers that are not in use:

1. 102-73161-23 SOT-89 MMIC
(See section 4.18.4 on page 95).
Class C amplifier using ADL5536 or similar. Part substitution required for DC block.

2. 102-73161-29 LVDS 74LVC04 gate
(See section 4.17.3 on page 78).
Class D amplifier using two 74LVC04 CMOS gates. Input is LVDS from SI5351.

3. 102-73181-36 DRA818/SA818 RF Module
(See section 4.17.9 on page 94).
RF Module

4. 102-73227-11 80M RF Module
(See section 4.17.8 on page 92).
80M RF Module

94

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.18.1 102-73161-12S

MMIC Amplifier Adapter (not implemented).

This is a small patch board that may be installed in place of Q2 and C57. This replaces the
MAX2602 RF transistor with a SMA3101 MMIC Amplifier. C57 moves the the patch board
to provide adequate room to mount the patch board.

4.18.2 102-73161-12M

Bipolar Junction Transistor Adapter (not implemented).

This is a small patch board, identical to the -S board in size, that may be installed in place
of Q2 and C57. This replaces the MAX2602 RF transistor with a BJT device in an SOT23
package.

4.18.3 102-73161-21 MCPH6 MMIC 50Ω amplifier

MMIC Power Amplifier Daughter board (not implemented).

This is a planned power amplifier that makes use of a SMA3101 or SMA3103 MMIC amplifier
in an MCPH6 package.

4.18.4 102-73161-23 SOT89 MMIC 50Ω amplifier

MMIC Power Amplifier Daughter board.

This power amplifier board makes use of an Analog Devices ADL5536 or ADL5544 MMIC
amplifier in an SOT89 package.

A DC blocking cap is required at the input to the ADL5536/ADL5544 as this was missed in
the artwork.

The ADL5536 is expected to produce close to 100mW.
The ADL5544 is expected to produce close to 50mW.

4.18.5 102-73161-27 90mW Class-D

74LVC Power Amplifier Daughter board (not implemented).

This power amplifier board uses a simple CMOS gate to provide current gain and slightly in-
crease the output power.

One 74LVC1G04W5-7 device buffers the RF Clock from the motherboard driving three
74LVC1G04W5-7 output buffers. These gates operate from the 5V rail and provide enough
current to drive 90mW into a 50Ω load.

95

ICARC FOX Transmitters: 102-73181 KC0JFQ

4.18.6 102-73181-22 DRA818 1W RF transceiver

SA818 or DRA818 RF module (deficient design).
This daughter board provisions an SA818 or DRA818 RF walkie-talkie module. These mod-
ules may be obtained in both VHF and UHF variants.
The DRA818/SA818 modules are self-contained RF subsystems that eliminate the need
for the clock synthesizer. This class of RF board works correctly only on the 102-73181-10
boards.

This module is missing connections to function correctly.

4.18.7 102-73181-24 DRA818 1W RF transceiver

SA818 or DRA818 RF module (deficient design).
This daughter board is a minor upgrade to the 102-73181-22 board.
Add capability to switch between HI and LO power.
Add DC block to audio input to DRA818.
Add D2 and DS2 to allow eliminating regulators.
Change VR1 to 4.2V regulator (eliminate adjustable regulator). Also much lower cost.
Incorrect pinout for the 4.2V regulator. This module is missing connections to function cor-
rectly.

par

4.18.8 102-73181-34 DRA818 1W RF transceiver

SA818 or DRA818 RF module (deficient design).
This daughter board is a minor upgrade to the 102-73181-24 board.
Split the PTT (pusk-to-talk, the transmit enable line) and PD (power down) functions such
that the zNEO control these signals with separate pins. The zNEO now has complete timing
control.
Add attenuator to the output so we can make an RF daughter board that doesn’t produce so
much RF power.
Incorrect pinout for the 4.2V regulator. This module is missing connections to function cor-
rectly.

par

96

Chapter 5

Operation

Notes on the physical operation of the FOX Transmitter.

Do NOT handle the transmitter by the antenna!

The antenna connector mounting pins are not designed to carry the load
of the transmitter enclosure and battery. Handling the tranmsitter by the
antenna will, eventually, result in fracturing the mounting pins of the BNC
connector. (not the solder joint!)
Replacing the connector requires considerable heat which may damage the
board if not done properly.

5.1 Power

The device is powered in the field using a battery.
An LR22 9V may be expected to run the unit for several hours when using
a low power amplifier. There is enough room in the housing to make use
of a 6-cell AAA battery. Note that a set of 6 AAA alkaline batteries are
typically cheaper to purchase than a single LR22. The 6-cell pack will last
considerably longer and allow use of a higher power RF amplifier.

Either of these connect to the circuit board using a 3 pin locking connector.

Revision 1 boards (102-73161-12) are also provisioned with a jumper that
takes power from the USB bus when connected to a host machine. This can
be used to leave the transmitter powered for several hours to charge the
battery for the TOY clock.

Revision 2 boards (102-73161-25) change the 5V regulator to a switchmode
device to further improve battery life.
The switchmode regulator allows the use of higher voltage batteries without
the accompanying heat. Switching to lithium chemistry batteries would
allow extended operation or operating at higher power levels.

Exercise standard care with respect to leaving batteries in the transmitter for long periods of
time. A discharged primary cell tends to leak and destroy the circuit board.

97

ICARC FOX Transmitters: 102-73181 KC0JFQ

Keep in mind that the main battery provides a very samll current to keep the TOY clock run-
ning and to keep the backup battery topped off. Units that used a removeable backup battery can
have all chemical threats removed for long term storage. Although the main battery is easily re-
placed, the ML1220 backup is soldered in place and may need to be replaced if allowed to fully
discharge.

It should also be mentioned here that the inexpensive battery holder specified is not well suited
to dealing with a leaking cell. This usually results in non-conductive corrosion salts forming on
the spring and contact. Please do not be shy about discarding a battery holder that seems not to
work well. Although temporary measures can be employed to force the holder to work (such as
rotating the cells to burnish the contacts or even sanding the contacts) this may result in loss of
power during an event!

5.2 Antenna

The output matching network and output filter assume a 50 Ohm antenna system. Power levels
are low enough that matching should not be critical. This is probably a good candidate for a J-
pole made from 300Ω twinlead.
An impedance mis-match will affect the performance of the filter and the radiated power.
The motherboard may also be built with tip jacks in place of the BNC connector. This are in-
tended to be used with a simple wire dipole antenna. Cut the wire to length and solder into a tip
plug. The plug may then be attached in the field.

Rubber Ducky From Amazon:
NAGOYA Dual Band UHF/VHF
Super Soft Flexible Two Way Radio
BNC Connector Antenna 144/430MHz
Orange(2packs)

HYS-771 144/430 MHz
Dual-Band High Gain Antenna
BNC
15.6 inches
VHF/UHF Radio

5.3 Jumpers

Table 5.1: Jumpers
Ref
Des

IN OUT Description

JP2 MAS= MASTER Jumper
JP3 TEST= TEST Jumper
JP4 USB Battery USB Power Configuration
JP5 Development Deploy Code LED
JP6 Development Deploy Code Buzzer
JP7 (DRA818) SI5351 5V daughter board power bypass

98

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.3.1 Jumper JP2/JP3: MASTER/TEST
Sheet 4.6E/Sheet 3.2A
Installation of this jumpers control how the fox transmitter starts up. All 4 combinations produce
results.

Table 5.2: MAS/TEST Jumpers
JP2
MAS

JP3
TEST

Files
Run

Description

OUT OUT INI=
ANN=

System Identity
Announce Message

OUT IN INI=
TEST=

System Identity
Test commands

IN OUT INI=
MAS=

System Identity
Master commands

IN IN no commands are run
(fault recovery)

In normal operation, i.e. zero or one jumper in these two positions, we run the initialization com-
mands to establish the identity of the transmitter. Station callsign and nickname should show up
only in ther INI= commands.
If neither jumper is installed, we proceed with the announce message. This announce message is
intended to let the hunt operator know that the transmitter is functioning as it is placed for the
hunt.
When one jumper is in place, the announce message (i.e. the ANN= commands) is replaced
with the TEST= commands (JP3) or the MAS= commands (JP2).
Note that the INI= commands are run for both these cases to establish the station identity.
Installing both jumpers places the system is a Fault Recovery State.
This skips all commands from the FRAM to allow control of the uninitialized system from the
serial port (i.e. you can erase the entire FRAM, or clear out commands that prevent proper oper-
ation).
With both jumpers installed, the station identity will not be set, so commands that send the call-
sign or nickname will not operate correctly. This also means the operating frequency is not set,
affecting the BEGN command.

5.3.2 Jumper JP4: USB Power
Sheet 3.4A
USB Power Bypass. Installing this jumper powers the station from the USB bus (assuming that
J2 and U6 are populated).

5.3.3 Jumper JP5: LED
Sheet 2.8D
Enables the D2 LED.
Leave this jumper out when operating in the field, you can’t see the LED so there is no point in
wasting the power to drive it!
This jumper and the associated MOSFET and LED may not be populated.

99

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.3.4 Jumper JP6: BUZZER
Sheet 2.9D
Enables the thoroughly annoying BZ1 buzzer.
Leave this jumper out when operating in the field, you’ll give your position away!
As with the JP5 jumper, this jumper and the associated MOSFET and buzzer may not be popu-
lated.

With R12, R58, Q5 and BZ1 installed, you will hear code on the buzzer. This can be used to as-
sist in debugging your operating sequence or for a benchtop demonstration of the Fox Transmit-
ter.

5.3.5 Jumper JP7: DB Power
Sheet 5.4C
Installing this jumper bypasses the 5V power switch that supplies 5V to the RF daughter board.
This jumper is necessary when using the DRA818/SA818 RF subsystem with the 102-73181-5
artwork revision.
The 102-73181-10 artwork revision has a provision to control the power switch, U81, from a sepa-
rate pin from the zNEO. This has the potential to reduce power consumption slightly by remov-
ing power from the DRA818/SA818 module when not transmitting. The 102-73181-10 artwork
can use the separate power control as a fail-safe to de-activate the DRA818/SA818 module. The
DRA818/SA818 module seems to require a fair bit of time to recover from a power-down.

5.4 Resistor Jumpers

Table 5.3: Resistor Selection
Ref
Des

1-2 2-3 Description

R26 5V USB 5V Local FT232RL VCC Voltage

5.4.1 Resistor Jumper: R26
Sheet 3.5B
Normally the FT232R is powered by the USB bus so the host connection doesn’t disconnect dur-
ing software development.
During operation, powering from the USB removes the current draw of the FT232R from the bat-
tery.
This position will not be populated if the FT232RL is not present.

5.4.2 Resistor Jumper: R5 & R6
Sheet 2.4D
Selects the pin on the programming header connected to the zNEO.
Always install R5, leaving R6 unpopulated as shown on the schematic and in the parts list.

100

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.4.3 Resistor Jumper: R15 & R18
Sheet 3.2B
102-73181-10: Install as indicated on the silkscreen (vertical).
This jumper pair connects the zNEO port 1 pins to the FT232RL serial
pins and to the U1 buffer for the TTL-232R-3V3-AJ cable.
There should never a need to change the orientation of these resistors.

5.4.4 Resistor Jumper: R1 & R9
Sheet 3.4D
102-73181-10: Install as indicated on the silkscreen (vertical).
This jumper pair connects the zNEO port 0 pins to the inter-board jumpers
to the DRA818/SA818 daughter board (the daughter board also has resis-
tor positions to accomplish the same function).

5.4.5 Resistor Jumper: R64 & R22
Sheet 3.2C

102-73181-10: Install rotated from that indicated on the silkscreen (verti-
cal as shown).
This jumper pair connects the other side of the U1 buffer to the physical
connector for the TTL-232R-3V3-AJ cable.

The indicated orientation is incorrect for the TTL-232R-3V3-AJ cable,
switch the resistor orientation in order to swap the Rx and Tx signals to
what the TTL-232R-3V3-AJ cable requires.

5.4.6 Resistor Jumper: R68
Sheet 5.2D
102-73181-10: Install in position 2-3 for proper operation.
This jumper position seperates the power switching function from the
transmit enable function.
Version 3.x software requires that the resistor be installed in the 2-3 po-
sition. The main board independantly manages timing for the DB_PWR
signal and the TX_ENA signal. Both the DRA818/SA818 module and the
chirping amplifiers require this setup.

When the resistor is installed on the 1-2 pads, the TX_ENA signal controls the power switches
along with it being routed to the RF daughterboard.
In this position, the DRA818/SA818 module will not have time to complete its power-on se-
quence before the first setup commands are sent (and, therefore the commands are lost). The
DRA818/SA818 module appears to be dead!
This position also interferes with the 102-73181-28 and 102-73181-71 amplifier modules when op-
erating in a chirping mode.

101

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.5 Time

Timekeeping in the processor subsystem is present to allow synchronization of multiple transmit-
ters. To accomplish this a reasonably accurate clock system is required, but it does not need to
track from any particular epoch. As long as all the transmitters are using the same starting point
the scheduling algorithm will function correctly.

A truncated time is entirely adequate. The Linux based utility that is used to load the FRAM
typically uses a truncated Linux time to update the TOY clock.

Internally the zNEO uses the clock time and truncates it to seconds of day (using modular arith-
metic). Having the internal time truncated to a day makes the arithmetic a bit easier to deal
with. The algorithm works with any timetag that is aligned with the start of the day.

5.5.1 Time Network

The time synchronization network function that appeared on the J4 connector has been depre-
cated. The J4 connector function on the 102-73181-10 boards is now the zNEO host control port.
The J4 connector on older revisions should not be connected to anything, it is assigned to the
DRA818/SA818 driver.
This moves the connection point outside the case on the 102-73181-10 boards so no disassembly
is required when updating the station time.

5.5.2 Time Synch Procedure

Time synchronization on the 102-73181 boards may be accomplished through J4 or J5, whichever
is installed. The 102-73161-25 boards are controlled through the J5 connector.
Typical command line to update the stations TOY clock:

/home/wtr/Radio/halo_term/fox_simple -SFOX7 -t10
/home/wtr/Radio/halo_term/fox_simple -SFOX2X -t10

Typical command line to load the FRAM and set the time:

/home/wtr/Radio/halo_term/fox_simple -SFOX7 -t10 -ffox7.fox
/home/wtr/Radio/halo_term/fox_simple -SFOX2X -t10 -ffox20.fox

Examples above are commands used by the author to access the 102-73161 units (FOX7) of the
102-73181 units (FOX2X). The 102-73161 units have unique names as the USB controller resides
on the fox circuit board. The 102-73181 units move the USB UART to an external cable (only
one USB device for all of them) to reduce unit cost and simplify access to the unit.
The 102-73181 units all use the cable shown in figure 4.28 on page 64. As we use one FTDI se-
rial USB device to access all fox transmitters, we don’t change the device selection supplied to
fox_simple.

102

ICARC FOX Transmitters: 102-73181 KC0JFQ

A second example is an excerpt from the shell script (bash) that was used to load an entire group
of fox transmitters.

FOXS="/home/wtr/Radio/halo_term/fox_simple"
TACH="-SFOX2X"
FOXCMD="FOX2X_KC0JFQ.fox"
CALL="W0JV"
NAME="FOX20"
FREQ="144.225"
SCHED="300,0"
$FOXS $TACH -c250 -t10 -f$FOXCMD -lFOX2X_KC0JFQ.log \

-C$CALL -N$NAME -R$SCHED -Q$FREQ

The $FOXS, as you would expect, is simply the Fox Station loader utility.
The $TACH is a keyword that determines the USB serial device we need to talk to.
The $FOXCMD is the common file (used for all the units in this group) with the operating
schedule.
The callsign in the example is for the Iowa City Amateur Radio Club as this setup was for a club
foxhunt.
The nickname for the group of transmitters ranged from FOX20 through FOX32 (big hunt!).
There are several frequency groups in operation for these hunts.
The operating frequency is in the $FREQ variable. The announce frequency, which is the same
for all units participating in the hunt, is set in the $FOXCMD file.
The scheduling period for this group is 5 minutes (300 seconds) and this is what is sent to the
first unit in the group (offset is zero seconds).

Subsequent invocations will change only the nickname and the scheduling variable.

NAME="FOX21"
SCHED="300,60"
$FOXS $TACH -c250 -t10 -f$FOXCMD -lFOX2X_KC0JFQ.log \

-C$CALL -N$NAME -R$SCHED -Q$FREQ

The other variables remain the same.
We end up with all five units (300 second cycle period, with 60 seconds allocated to each station)
operating on the same frequency in a fully synchronized manner.
The callsign and nickname are substituted in the $CALL and $NAME commands in the fox
transmitter itself. The other variables are substituted in the loader utility as the transmitter is
loaded.

103

ICARC FOX Transmitters: 102-73181 KC0JFQ

We can also brute force the time (for a single unit) by getting time from the host computer.

Unix/Linux:

date +"%H:%M:%S"

Simply copy the time value from this (or equivalent) to a TIME command sent to the tar-
get fox transmitter.

TIME 15:08:32

It bears repeating that this shortcut is effective only for loading a single unit! We need a more
precise loading method (as suggested at the begining of section 5.5.2) when synchronizing multi-
ple transmitteers.

5.6 External Frequency Tables

Work on the 102-73181-10 hardware revealed that the reference crystal used with the SI5351 may
require that CT1 and CT2 be installed to trim the frequency of X5 such that the register values
calculated assuming a 20MHz crystal will result in the desired frequency of operation.
The parts (CT1 and CT2) themselves are relatively expensive (at around $3.50 each). Although
you may need only one installed, an alternate approach may be used to generate the register
values using the actual operating frequency of the X5 crystal as the synthesizer in the SI5351 is
quite flexible.

We can use one of the frequency selections permanently stored in the internal frequency table
to load the SI5351 in order to measure the frequency offset error. Once we know how far off the
crystal is operating, we can adjust the calculations (for the SI5351 register values) to config-
ure the SI5351 for operation at that actual crystal frequency. Consult the AN1234, AN619 and
AN551 application notes from SkyWorks for intimate details of calculating the values used to load
the Multisynth registeers.

The approach taken when using the SI5351 configuration table utility (see section 17.1 on page
295) is to base the calculations on the target output frequency given the 20MHz crystal specified
in the schematic. Although we could calculate backwards and arrive at the actual operating fre-
quency of the crystal, that level of effort is not required for successful operation with a typical
hand held VHF receiver.
We simply measure the uncorrected error offset and then apply that to the target output fre-
quency. In practice this method limits the range of frequencies we can correctly generate (as er-
rors accumulate away from the point at which we measured the offset). The typical hand held
VHF receiver, however, will simply ignore small errors (i.e. the carrier can be several KHz off and
the HT will still lock to the carrier).

The support in the zNEO operating software is a mechanism to access register values stored in
FRAM (see section 9.15.2 on page 159) in the form of a record that looks somewhat like a com-
mand. The FREQ command can then scan the commands in FRAM looking for a matching en-
try to find the values that will be loaded into the SI5351 Multisynth registers.

104

ICARC FOX Transmitters: 102-73181 KC0JFQ

Some additions were made to the V3.72 software as well as the SI5351 configuration table utility
to make the frequency offset visible. The SI5351 doesn’t make any use of this information (i.e.
the offset frequency), we track it in the zNEO software as a documentation aid for the end user.
The STAT command will display the frequency offset if it has been defined.

The SI5351 configuration table utility will generate an FOFF command that resides in the INI=
file noting the offset frequency used to generate the external table. The FREQ command gives
priority to the external frequency table. This means the the external frequency table can be used
as the primary source of data for the Multisynth registers (in the SI5351). This also somewhat
implies that the internal table need only have one entry to configure the SI5351 for frequency
measurements. The internal table, in practice, needs this single entry for the table scanner in the
frequency command to work correctly.

Some example external frequency table entries:
145.000=13BF,70E40,F4240
50.500=D26,61A7F,F4240,400

The frequency command scans for a matching string, requiring a character-for-character match.
The three parameters in the entry are the patterns that will be loaded into the MSNA_P1,
MSNA_P2, and MSNA_P3 registers in the first stage synthesizer in the SI5351.
The MSNB registers, although not used, are loaded with the same patterns as the MSNA regis-
ters.

The second stage Multisynth register values have the following default values (when not supplied
as part of the frequency entry):
The MSx_P1 registers all have a value of 256 (0x100) loaded.
The MSx_P2 registers all have a value of zero (0x00) loaded.
The MSx_P3 registers all have a value of one (0x01) loaded.
For operation outside of the 2M band, the The MSx_P1 register pattern in the second stage Mul-
tisynth must also supplied.
Note that changing the second stage Multisynth value will change our operating band! Your band
selection is seet by the low pass filter on the motherboard!

5.6.1 AN551 (Skyworks)

This application note indicates, in the first paragraph, that the SI5351 utilizes a standard, non-
pullable 25/27 MHz crystal. This is not actually necessary, the SI5351 will work with other crys-
tals. Do keep in mind that using the 20MHz crystal we shift things around that affect what range
of frequencies we can actually generate. For operation in the 2M band, however, we see no issues.
The selected 20MHz crystal has a load capacitance specification the allows the crystal to operate
above its specified frequency.
It is possible to select a crystal with a lower load capacitance specification.

105

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.6.2 AN619 (Skyworks)

This application note has the formulae needed to generate multi-synth register values.
As we are pulling the SI5351 reference oscillator (X5, CT1, CT2) around to achieve FM modula-
tion, jitter is not particularly concerning to us (2.1.1. Selecting the Proper VCO Frequencies and
Divide Ratios).
We only use (or enable) on CLK output at a time, so pin assignment doesn’t present a concern
(2.2. Output Clock Pin Assignment).

5.6.3 AN1234 (Skyworks)

Discussion of the crystal configuration in (2.1.1 XTAL Source).

Do not use the register map in the application note!
The register map in this document is for a 16-pin device and it the address assignments are incor-
rect for our MSOP-10 device!

5.6.4 Operating in the FM Broadcast band
The SI5351 can easily be programmed to operate in the FM broadcast band and the 4.07 soft-
ware release allows selection of frequencies between 87.5MHz and 108.0MHz. An external fre-
quency table entry is needed for the target frequency.
It is also necessary to carefully evaluate the output power produced by the transmitter. Mov-
ing down to 90MHz allows the RF amplifier modules to operate a bit more efficiently which will
probably produce too much power on that band.
The 102-73161-22, 102-73161-24, 102-73161-29 and 102-73181-35 boards may be good candidates
for use in this band.
The output filter network will need to be reworked to deal with 2nd. harmonics. The 102-73181-
12 board has an updated table.
The standard rubber-ducky antenna will probably not work well as it will not present a proper
50Ω load to the transmitter and filter. You will probably need to use a telescoping antenna ex-
tended to about 71cM (28 inches). Several units listed on Amazon show a length of 30 inches.

5.7 Audio Filesystem Loading
With the addition of a voice feature to the 102-73161-25 and 102-73181 boards, we need a means
of storing audio data for use with the TALK command. Given that the host interface (i.e. the
command port) is intended to be operated by hand, we initially made no effort to implement a
binary interface for loading audio waveform data. Rather, we simply adopted the use of an exist-
ing (and ancient) format from the early days of microprocessors. The command that effects the
loading process is descriped in section 10.58 on page 215.

The InTel HEX record begins with a colon (:) which is recgonized by the command decoder in
the fox transmitter. The InTel HEX record is decoded and loaded into the FLASH device. We
try to make use of page-write FLASH devices to allow the FLASH device program time to over-
lap with the arrival of the next record. The page-write feature allows a line of data, usually at
least 32 bytes, to be sent to the FLASH device to be written as a group. The write time for a
line of data is the same as that required for a single byte of data.

106

ICARC FOX Transmitters: 102-73181 KC0JFQ

We demand that the download data be no more that 32 bytes, in most cases exactly 32 bytes,
and that is naturally aligned (that is is the 32 byte chunk start on a 32 byte boundary).
The InTel HEX record has an 8-bit length field, a 16 bit address field, an 8-bit record type field,
up to 32 8-bit data fields, and an 8-bit checksum.
There are three additional InTel HEX record types that the command decoder deals with. There
are two extended address fields that are used to provide upper address bits that are needed to
address the typical FLASH devices we see on the fox transmitter board.
A type 2 record has a 16 bit address segment, that is shifted up 12 bits and added to the address
in the data record.
A type 4 record has a 16 bit address extension that is shifted up 16 bits and added to the address
in the data record.
And finally a type 1 record that is an EOF record that indicates the end of a load file. Although
we recgonize and validate this record, it is not used.

A short delay is required between records to allow the command decoder to recgonize that a new
command (or InTel HEX record) has arrived and copy the receive buffer to a local buffer before
the next line of data can be processed by the fox transmitter.
As the command (i.e. the InTel HEX record) is being decoded and written to the FLASH device,
the next line of the InTel HEX record can be moving into the input buffer.
The command decoder sends out a status report after the InTel HEX record has been fully pro-
cessed taht may be used to implement a closed-loop loader. In practive, the fox_simple utility
runs open-loop with a programmable delay between lines in an attemp to take some advantage of
the processing overlap that is available.

You should note that there is no file system implemented in the FLASH device. Memory alloca-
tion is expected to be performed by the utility that is used to gather all the needed audio clips
together for downloading into the fox transmitter.
As implemented, the audio utility (described in section 15 on page 273) is given a list of WAV
files that will be used by the fox transmitter. The audio utility then takes the WAV files in
sequence and generates InTel HEX records is order. Each new WAV file starts on a convenient
(at least 32 byte) boundary (to make debugging a bit more convenient) with the WAV file being
copied, in effect, to the HEX file. Embedded in the HEX file after each audio clip are a directory
record for the audio clip.

The directory records are prefaced with a REM- (see section 10.2.3 on page 170) to keep them
from actually being saved as directory entries in the FRAM.
After the HEX image for the load file is generated we use grep to extract the directory entries
from the HEX image. The REM- is removed using a text editor so that the directory entries
may then be save to the FRAM.

5.7.1 Binary High-Speed Loading

The author has recently implemented a high-speed loader to speed up loading of the audio
filesystem.

This is a closed-loop protocol using more-or-less standard ASCII characters to implement the
protocol.
A terminating message is used to automatically switch back to normal operation.

107

ICARC FOX Transmitters: 102-73181 KC0JFQ

We enhance the 56K and H115 commands to switch over to operating in the binary protocol
mode at the specified bit rate.
This reduces audio waveform load time considerably. We gain from the increased transfer speed
(when using H115), and by having the zNEO reply once the FLASH programming cycle has fin-
ished.
Additional discussion of the high-speed loader is found in section 12.4 on page 239.

5.8 Developing A Message Sequence

A short discussion of how to go about developing a set of message traffic for a fox group.
First off, when talking about a fox group, we are simply referring to a group of fox transmit-
ters all operating on the same frequency running with a synchronized schedule. This set of
transmitters must have matching scheduling periods and correctly staggered scheduling offsets so
that they can be individually heard. In other words, we typically don’t want them ever to trans-
mit concurrently.
Second, note that they all could operate with the same sequence with just a few unique com-
mands (i.e. station nickname and scheduling offset).

In the following discussion, the presence of the TEST and MAS jumpers affect which setup files
are run.
When a fox transmitter is first commissioned, or when the FRAM has been erased, you can easily
observe which files are searched for through the serial port.
You can monitor activity in a fully configuired device, as well.

5.8.1 Identification and basic voice clips
The stations, although sharing a common callsign, may want to be individualized. Typi-
cally with a stroke and a number : KA0AAA/1 and KA0AAA/2, etc:
The signon message is built as follows:

sprintf(buffer, "e.. CQ CQ CQ DE \%s ", fox_config.CallSign);

note that the nickname is not sent as part of the standard signon message that is gener-
ated by the BEGN command.
The station nickname should be unique to allow the hunters to properly (quickly) identify
the station. This form of station identification requires a CODE or a TALK command to
send the saved nickname using code or voice.
The station callsign and nickname should be saved in waveform memory to be accessed by
the TALK command. Voice identification will be desirable for those that can’t easily read
code.

108

ICARC FOX Transmitters: 102-73181 KC0JFQ

The set of battery reporting voice clips should be included to allow the unit to verbally
report battery condition throughout the hunt. Here is a sample load of the file fragments
that will be used:

esav TALK=BATTI 44 4140 4K
esav TALK=BATTV 4268 4374 4K
esav TALK=REG5 8748 5016 4K
esav TALK=POINT 13868 1316 4K
esav TALK=HZ 15276 2290 4K
esav TALK=KHZ 17708 3054 4K
esav TALK=MHZ 20908 3130 4K
esav TALK=N0 24108 2578 4K
esav TALK=N1 26796 1730 4K
esav TALK=N2 28588 2114 4K
esav TALK=N3 30764 1858 4K
esav TALK=N4 32684 1858 4K
esav TALK=N5 34604 2126 4K
esav TALK=N6 36780 1672 4K
esav TALK=N7 38572 1870 4K
esav TALK=N8 40492 1474 4K
esav TALK=N9 42028 2276 4K
esav TALK=MAMP 44460 3586 4K
esav TALK=VOLTS 48172 2922 4K

The last few clips are application dependent, the filenames will match the callsign and
nickname saved in to waveform memory.

esav TALK=KA0AAA 51244 5620 4K
esav TALK=FOX20 63148 6130 4K
esav TALK=FOX21 65148 6130 4K
esav TALK=FOX22 67148 6130 4K
esav TALK=FOX23 69148 6130 4K
esav TALK=FOX24 71148 6130 4K

This example assigns the same callsign to all units and loads all the nicknames into wave-
form memory. The waveform load image will the be the same on all units and will require
a flash device of adequate size to hold all of the voice clips.

Assuming you have sufficient space in the FLASH, you can load any number of audio clips
to form the fox transmitter personality.

109

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.8.2 Initialization
Once the audio waveform data is loaded into waveform memory (using an InTel HEX file) and
the audio filesystem directory is loaded into FRAM memory (as a set of esav TALK... com-
mands) we can proceed with initialization.
The INI= file runs following reset unless both the TEST and MAS jumpers are in place. The
TEST jumper, when in place, triggers the TEST= file after the INI= file runs. The MAS
jumper, when in place, triggers the MAS= file after the INI= file runs.
This is an example of the INI= file that is run at startup.

esav INI=TIME
esav INI=WAIT 0 .5
esav INI=TIME
esav INI=EPOC −5.0

esav INI=CALL KA0AAA
esav INI=NAME FOX20

esav INI=CONF DRA818
esav INI=CONF T1=2500
esav INI=CONF T2=150

esav INI=FREQ 144.150
esav INI=MODS, S0 ,300 ,0
esav INI=MODS, S1 ,300 ,60
esav INI=MODS, S2 ,300 ,120
esav INI=MODS, S3 ,300 ,180
esav INI=MODS, S4 ,300 ,240

This initialization sequence sets the unit callsign, nickname, time and timezone. These setup
commands should be at the begining of the INI= file to establish the transmitter identity. This
allows the <call> and <name> substitutions to function later in the ANN=, TEST= and
MAS= files.
Pay particular attention to the callsign and nickname. The callsign must be defined in the setup
commands to allow the transmitter to remain in compliance with FCC rules. The nickname will
be used to uniquely identify each transmitter as they will all be operating under the same call-
sign.
We then configure the RF subsystem, selecting the RF hardware we are using and changing any
required operating parameters. In this example, we extend the time allowed for the DRA818
module to stabilize (T1) before we start sending serial commands to configure it when starting
to send a message over the air. We also allow the RF to stabilize a bit using the T2 parameter.

The DRA818/SA818 modules have little in the way of configuration control we are inter-
ested in. We are exclusively transmitting, and with the 102-73181-10 revision boards, we
will remove power from the module when it is not in use.
One timing parameter that may need adjustment is the T1 state delay. Selecting SA818 or
DRA818 sets e default value of 2000 mSec which seems to work when the module is con-
tinuously powered. The 102-73181-10 revision boards require some additional time for the
module to be ready for commands following power-up.

110

ICARC FOX Transmitters: 102-73181 KC0JFQ

Frequency selection simply requires we tell the system what to use. In out example we have se-
lected the announce frequency of 144.150MHz.
We also setup the master schedule, specifying the schedule each of our stations will use when op-
erating. There is no need for any unit to know all the schedules, we do it simply for our conve-
nience.

5.8.3 Announce
The announce message is sent shortly after the unit is powered on to provide a sanity check for
the hunt operators during setup.

esav ANN=TONE 1.0
esav ANN=CWPM 20,−1,−1,−1,−1
esav ANN=BEGN
esav ANN=TALK <CALL>
esav ANN=TALK <NAME>
esav ANN=BATC E V 7.2
esav ANN=BATC E I
esav ANN=BATV V
esav ANN=BATV I
esav ANN=DONE

esav ANN=FREQ $2
esav ANN=TONE 1.6
esav ANN=CWPM 15
esav ANN=STAT

Just a few things you will want to keep track of in the setup. The setup is broken into multiple
sections: INI=, ANN=, TEST=, and MAS=. Which of these gets run is controlled by the TEST
and MAS jumpers (see section 5.3.1 on page 99).
The (setup) FREQ command sits in the INI= file to force a frequency selection to occur no mat-
ter the state of the TEST and MAS jumpers. We set the target operating frequency after we
send the initialization (i.e. the ANN= commands) message.
Next set the code speed up to keep the message length somewhat reasonable and turn the trans-
mitter on. The BEGN command will send of a CQ with the callsign we have sent earlier.
Once the code traffic clears we call up the callsign and nickname in waveform memory and set it
out (verbally) to let the operator know he has planted the intended fox station.
We now go on to battery reporting, using two battery reporting commands.

The BATC command report in code. In our example above, we ask for Encoded Voltage
with a trip point of 7.2 volts. We get a bit of code that either reports a voltage above the
trip point ("BATC HI HI TTTTTTT EEE") or a low voltage condition ("BATC SOS SOS
TTTTTT EEEEEEE").
The battery voltage is encoded as a series of DAHs and DITs representing the units and
tenths. This reduces to listening for either HI HI (....) or SOS SOS (... —
— ...) and counting longs and shorts.

111

ICARC FOX Transmitters: 102-73181 KC0JFQ

The following BATC command (still code) reports the measured current draw. This will
be measured when the command is executed so it reflects the power draw with the RF sec-
tion active.
It is encoded much like the voltage section, starting with ("BATC III TTTTTTT EEE").
The tens position is the string of Ts and the units position is the string of Es.
The BATV command works in much the same manner as the BATC command other
than sending its result using voice files.
The first command (BATV V) reports voltage to one decimal place. and the second
(BATV I) reports current in milliamps.

As this is simply a message to report that the station is alive and report battery condition when
we power on, we send the DONE messsage and shut down the RF subsystem.
5.8.4 Active Scheduling
At this point, after the DONE command, we reset the operating frequency to our assigned fre-
quency and begin running our schedule.
The TONE, CWPM commands provides a baseline code personality if the schedule is missing
these setup commands.
The STAT command is useful only when connected to a host. When deploying for the hunt, it
has no practical effect.
Assuming the ANN= file has enabled at least one schedule, the operating program, when idle,
looks for active schedules that are to be run.

5.9 Deployment

Once time synchronization has been achieved on the bench the units may be powered off to con-
serve battery life. They can then be powered on when deposited in their hiding locations. Follow-
ing initialization of a few seconds, the units run the ANN= sequence which should report the
units callsign and name on a base frequency shared by all units being deployed.

Pay attention to the startup (power-on) message traffic, listening for the battery message.
This battery message gives an idea of when units are soon to go silent. If the trip point is cor-
rectly selected, the unit will send an "SOS" in the battery message when the battery voltage falls
below the trip point. When the battery voltage is good, a "HI HI" message is sent.

A final note on operation in the field:
Your only effective device control in the field is the power switch. There are no write activities
that occur without sending commands. If you have correctly formed the schedules, that is to say
there are no commands in the schedule that write to the FRAM or FLASH, then powering off the
unit will not corrupt non-volatile storage.
This leaves you free to arbitrarily remove power from the transmitter at any time. If there are
incorrect transmissions, simply shut the unit off.

112

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.9.1 Deployment using multiple frequencies

Consider a hunt operating multiple transmitter groups. When operating more than one set of
transmitters it should be obvious that we will operate on multiple frequencies.
To make station deploy at the beginning of the hunt as seamless as possible, consider starting the
transmitters all on one startup frequency, say 144.150MHz, and switching over to an operating
frequency once the station is setup. A setup something like:

esav INI=CALL W0JV/20 1

esav INI=NAME FOX20 2

esav INI=TIME 3

esav INI=EPOC -6.0 4

esav INI=CWPM 25 5

esav INI=CONF SI5351 6

esav INI=CONF CLK0 7

esav INI=FREQ 144.150 8

esav INI=MODS S0 300 0 9

esav INI=MODS S1 300 60 10

esav INI=MODS S2 300 120 11

esav INI=MODS S3 300 180 12

esav INI=MODS S4 300 240 13

14

esav ANN=BEGN 15

esav ANN=BATV V 16

esav ANN=BATV I 17

esav ANN=BATV R 18

esav ANN=DONE 19

esav ANN=FREQ 144.450 20

esav ANN=RUN0,S2 21

esav ANN=STAT 22

The setup proceeds more-or-less normally through line 8, although we specify the startup fre-
quency (in this example 145.150MHz). Lines 9 through 13 setup the operating schedules for all
stations in this group. We will also load all schedules in the group into each station, changing
only lines 2 and 21 (although we don’t show any of that here). This is simply to make the man-
agement task a bit easier.
When the unit is switched on, the INI= commands are executed to setup the station (lines 1
..13).
Lines 15..22 are the announce message that runs right after the INI= commands.
The BEGN/DONE commands will, as expected, enable the radio and send out the requested
traffic.
We will get a CQ along with a station callsign from the BEGN command, a vocal battery sta-
tus report from the three BATV commands, and finally a station callsign followed with SK. The
transmitter will be shut off, exactly as expected from the DONE command.
Line 20 will then change the operating frequency to that which the group of stations are operat-
ing on. At this point the next BEGN command will transmit on the new frequency unless the
S*= sequence changes it.

113

ICARC FOX Transmitters: 102-73181 KC0JFQ

The RUN0 command (on line 21) enables one of the 5 schedules we will have stored in the
FRAM (some time before the hunt). The station is now ready to participate in the hunt.
The RUN0 command is placed here for clarity. In practice it may be located anywhere after
the DONE command. It need not occur (in the FRAM file system) adjacent to the other INI=
commands.
So when loading the 5 station group, the commands are loaded from the common file to each sta-
tion. The unique RUN0 commands may then be manually added following the file load.
When looking at contents of the FRAM, the INI=RUN0,Sn command will be displaced from
the rest of the INI= commands, but the file system doesn’t particularly care.
The STAT command on line 22 is present only as a debug aid (or as a sanity check) for the op-
erator when loading the station. When the station is connected to the host system, the setup can
be verified without having to manually enter a command. The time required to run the STAT
command is about one second. The time to display the status reports depending somewhat on
how the configuration affects the number of lines of information that is displayed.

5.9.2 Dropping Stations at the Hunt
If you’ve done your homework the night before, all that is required to setup for the hunt is to
power-on the station as it is dropped off at its operating location.
Your H.T. will be tuned to the startup frequency (nominally 144.150MHz) so you can hear the
station report to know that things are operating as intended. Pay attention to the battery re-
port (vocalized by lines 16..18) to see that battery voltage is adequate (above 7.w volts in our
example). On lower power units we can also include a battery current report to see that it isn’t
excessive (expect less than 50 mA on a fresh battery).
The placement order has no effect on hunt operation. The stations use the TOY clock to time
their transmissions.

5.10 External Transceiver

The board may be configured to operate an external transceiver using the J6 connector. Typi-
cally the ICS525/ICS307/SI5351/DRA818/SA818 would simply not be installed for this applica-
tion, but this is strictly not necessary if the antenna connector is properly terminated to prevent
stray RF.

The -25 artwork makes use of an RF daughter board that may be removed to prevent RF from
escaping.

The pinout is found in table 4.4 on page 65.

114

ICARC FOX Transmitters: 102-73181 KC0JFQ

Mating housings for the various configurations:

Table 5.4: J6 housing reference
Vendor
Number

DigiKey
Number

Vendor
Name

Description

102387-1 A25901-ND TE Connectivity
AMP Connectors

10-pin housing

102387-2 A25902-ND TE Connectivity
AMP Connectors

14-pin housing

87756-4 A25969CT-ND TE Connectivity
AMP Connectors

CONN SOCKET
22-26AWG
CRIMP GOLD

87523-5 A25993CT-ND TE Connectivity
AMP Connectors

CONN SOCKET
22-24AWG
CRIMP TIN

0901420010 WM8037-ND Molex 10-pin housing
0901420012 WM8038-ND Molex 12-pin housing
0901420014 WM8039-ND Molex 14-pin housing
0901190110 WM2580CT-ND Molex CONN SOCKET

22-24AWG
CRIMP GOLD

0901190109 WM2581CT-ND Molex CONN SOCKET
22-24AWG
CRIMP TIN

A mating housing from TE Connectivity (102387-1) with crimp contacts (87756-4) may be used
to fabricate a cable to connect to an external transceiver.

5.10.1 VCMO_TONE

Square Wave from timer in zNEO.

This signal is buffered by a tri-state driver that is disabled when no tone is required. The termi-
nation network pulls the voltage when the buffer is tri-state between tone bursts..

5.10.2 FILT_TONE

Filtered VCMO_TONE.

The VCMO_TONE signal is run through a simple RC filter to attenuate harmonics and pre-
sented on this pin.

5.10.3 AC_TONE

FILT_TONE witch DC isolation. Ground centered.

The FILT_TONE is passed through a capacitor to eliminate the DC offset and presented on this
pin. A large value resistor keeps the DC level near ground.

115

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.10.4 PTT

N-channel MOSFET switch to ground when transmitting.

The ZXMN3A01 device installed on the circuit board is a 30V device. Although rated to pass
1.8A, the circuit board does not provide traces that can carry this current. Limit current draw to
less than 100mA.

5.10.5 VBATT

Unswitched battery voltage.

The FOX transmitter may be powered through this pin to eliminate the internal battery. The
power switch is still used to switch the unit on.

5.10.6 V9.0

Switched battery voltage.

If the battery provides adequate current and life, the external transmitter may be powered from
this pin.

5.10.7 SWITCH

Panel switch input.

Same function as 102-73176 pin with 4.7K pull-up to V3.3.

5.10.8 PHOTO_CELL

Photo Cell input.

Same function as 102-73176 pin with 220K pull-up to V3.3.

5.10.9 GNDP

Transmitter ground.

5.11 CHRP: Chirping

A special modes was added to the V3.50 software, a "chirp" mode. The base mode of operation
is not a radar chirp mode where the audio frequency or the carrier frequency sweeps. Rather this
emulates the operation of a tracker such as that that would be used to track wildlife.
Chirp here referes to a short period of carrier plus audio followed by a period of quiet.

116

ICARC FOX Transmitters: 102-73181 KC0JFQ

The capability to emulate an audio chirp was added to the V3.84 software update. This is accom-
plished by adding an audio file capability to the CHRP command. The tone field is replaced with
the name of an audio file that will be sent rather than a simple tone.
An external audio processing utility (in the authors case, audacity) is used to generate an audio
chirp that is stored in FLASH.
The period and duration arguments function as expected, controlling the timing. Therep ar-
gument, i.e. the number of time the chirp loop repeats is identical, being controlled by the last
argument.
The duration argument acts slightly different when sending an audio file. Since the audio file
itself determines the length of time the transmitter will be active, the duration argument sets an
idle time, after the transmitter is sending carrier, before audio is sent.

The command to initiate this operating mode is the CHRP command along with a few parame-
ters that control its operation. See section 10.2.25 on page 196 for a command description.

This is a discontinuous mode where the carrier is disabled between chirps. Setup parameters con-
trol the audio modulation frequency, the timing of the chirp, and a repeat count to simulate con-
tinuous operation.
As we are operating within the limits of part 97, we are required to identify on a regular basis
(every 10 minutes) so we must tailor the time the emulation is active using the CHRP parame-
ters.
The CHRP command must occur between a BEGN command and a DONE command. In
this respect it operates just like a CODE or TALK command. The BEGN and DONE pro-
vide station identification in code at the begining and end of our message. When using multi-
ple CHRP commands you may find it necessary to send out the station callsign (using CODE
<CALL> or TALK <CALL>).

5.11.1 R68 in alternate position
This is the position that FOX21..FOX32 have the power control resistor strapped to. The resistor
must be in this position when using the DRA818/SA818 modules, for carrier control to work as
expected.

Use the 102-73181-28 RF amplifier board when R68 is in this position. The 102-73181-28 board
has an on-board power swith connected to the PTT net to perform this function. This allows the
DRA818/SA818 to be used with the 102-73181-28 RF amplifier board without having to change
R68.
V3.76 software is required to operate with tight schedules, that is where an overlapping group is
sending chirps less that 5 seconds apart.

5.11.2 R68 in primary position
This position uses the TX_ENA net to switch on the U81/U91 daughterboard power switch.
This position requires not using the DRA818/SA818 module. This is compatible with any of the
small RF amplifier daughterboards.
In this configuratio the TX_ENA net is used to remove power between chirps.
When R68 is in this position, timing for control of the DRA818/SA818 module is too short for
proper operation.

117

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.11.3 CONF DB_PWR
The older RF modules may be used for chirping by setting the DB_PWR configuration flag.
This allows the chirp handler to switch daughterboard power on and off using U81 on the moth-
erboard (controlled by the DB_PWR net).

5.11.4 Developing a CHIRP Sequence

This is a brief discussion of how to make use of the CHRP command to setup a simulated
wildlife tracker.
This attempts to emulate a VHF tracker while living within the constraints of part 97 (i.e. so we
remain rules compliant as far as station identification is concerned.)
To operate as a CHIRP transmitter, we make use of only 3 commands. First, the BEGN com-
mand enables the RF subsystem and sends out station identification in code. We then use a
CHRP command to generate a series of audible chirps. The sequenced duration of this com-
mand should be short enought that we can identify every 10 minutes, as required by the rules.
Finally, the third command is the DONE command that send station I.D. and shuts down the
RF subsystem.
As you should expect, in order to have this cycle repeat we need to have a schedule set up to
trigger this sequence at regular intervals.
The easiest approach, perhaps, is to set up a short schedule and a long CHIRP sequence. Save
(esav) something along the lines of the following sequence:

S5=CWPM 25
S5=TONE 1.0
S5=BEGN
S5=CHRP 1.2, 1, 0, 0.10, 560
S5=DONE SILENT

This sequence takes a bit more than 9½ minutes to run. The BEGN command and DONE
command take almost 20 seconds to run at 25WPM. We explicitly force the code rate to 25
WPM to constrain the time the BEGN and DONE commands require to execute.
This schedule can be set to run every 60 seconds which will cause the entire chirp sequence
to start on the minute. Any existing ANN=RUN0,S0 command will need to be removed to
avoid the S0 schedule creeping in unexpectedly. Save (esav) these commands (remove any other
RUN0 commands):

INI=MODS S5,60,0
ANN=RUN0,S5

Now, when the transmitter is reset, the S5 sequence will be setup to run at the start of the
minute and the schedule enables with the RUN0 command.
Shortly after power on, the S5 sequence sequence will run, with a signon message, then 9½ min-
utes of the simulated chirp, followed by the signoff message. At 25WPM this will take a bit less
than 590 seconds to run.
The transmitter will go silent for about 10 seconds and then start up again.

118

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.12 Modulation

The fox transmitter can be operated in A1A (keyed unmodulated carrier) mode or in F1A/F3E
(FM modulated voice).

The 102-73181-10 boards have the power switching required to correctly implement this function.
The 102-73181-5 boards have the mechanical interface (mounting) required to securely attach the
102-73181-28 board.

5.12.1 A1A

Disable the tone generator by sending TONE 0.0.
Enable the A1A mode by sending CONF CW or CONF AM.

The transmitter will now send an unmodulated carrier for the dit/dah elements. The carrier is
diabled between elements.

This will not be generally compatible with an FM radio unless the squelch is open. The use of a
DTOA antenna system should work with this configuration.

Voice traffic (i.e. the TALK command) is handled somewhat gracefully. Each voice fragment (or
file) enables and diables the carrier.

5.12.2 F1A/F3E

This is generally compatible with an FM radio. The carrier is enabled for the duration of the
message.
Code traffic is handled by sending an audio tone over the air.

5.13 Status and Configuration Reporting

Status and Configuration reports have become more extensive in this release. The STAT com-
mand generates over 20 lines of information and the CONF command is respoinsible for over 40
lines.

The STAT command will give a summary of the current system configuration and the state of
the battery. If you have caused the transmitter to be enabled, the voltage and current measured
during tr4ansmit will also be displayed. The battery monitoring configuration is hardware revi-
sion dependant, the RF module configuration must be set correctly collect battery information.

CONF command dumps the configuration bits (a 32 bit longword array), showing which are set.
There are also settings for the RF subsystem that are also controlled here.

119

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.13.1 Status Reports
• System status

Software version number
System Time
Time Zone Offset

• TOY clock status
Time and control bits from DS1672

• Update Flag
Indicates that some setup instructions have run

• Jumpers (TEST and MAS)
System view of the TEST and MAS jumpers

• External memory devices
JEDEC ID data from the two external memory devices

• Battery status
Analog readings from the battery (voltage and current) when Idle
Analog readings from the battery (voltage and current) while Transmitting

• Analog channels
Analog readings from the remaining analog channels

• UART buffer status
UART input buffer use counts

• Schedules
List of the loaded schedules

• Identity (callsign, nickname)
Callsign (CALL command)
Nickname (NAME command)

• zNEO port status
Current state of the zNEO-GPIO port bits

• Radio Configuration
Short summary of the currently loaded radio configuration
Contents vary with selected RF generator.

• CW Configuration
Morse Generator configuration

• Transmission State Delays
Accommodation delays (in mSec)

120

ICARC FOX Transmitters: 102-73181 KC0JFQ

5.13.2 Configuration Reports
• RFGEN

Radio Personality selection flags

• RADIO
Transmitter control flagss

• CWISR
Tone Generator enable flag

• AUDIO
Voice generator configuration flags

• SYNTH
102-73161-25 control flag

• ANALOG
System analog channel monitor flags

• DEBUG
Debug flags

• SYNTH
SI5351 Synthesizer control flags

• BMON
Battery voltage monitor coefficients flag

• VOICE
Voice file system location flag

• T<n> timing
Transmission State Delays

121

ICARC FOX Transmitters: 102-73181 KC0JFQ

122

Chapter 6

Assembly

Assembly Hints
These notes are general suggestions about the order of installation and issues encountered by the
author building multiple units.
The assumption is that you are a competent technician. This is, in no way, a hand-holding tuto-
rial!

6.1 Board Procurement

The author makes use of JLCPCB (URL: https://jlcpcb.com/) to fabricate circuit boards. This
vendor has attractive pricing and a convenient web interface for ordering boards.
There exists a ZIP file (102_73181_10.jlcpcb.zip) that contains all the files JLCPCB requires.
The files match the JLCPCB file naming convention allowing the web interface to correctly iden-
tify copper, silkscreen and soldermask layers.

The PWA drawing (102_73181_10_pwa.pdf) has assembly notes. Only the top and bottom lay-
ers appear in this drawing.
All of the mechanical parts required for the finished project appear on this drawing. This serves
to place the mechanical parts into the Bill of Materials so you have an idea of the screws and
spacers required when mounting the main board into the enclosure and the daughter-board to the
the main board.
Refer to the PWB drawing (102_73181_10_pwb.pdf) for board dimensions. This drawing is pro-
vided to the board vendor and lists all the board fabrication requirements. All the individual lay-
ers are broken out in this drawing. The layering order on the first page of this drawing indicates
the number of layers required.

6.2 Board Inspection

Verify the circuit board is undamaged.
Soldermask and silkscreen should be undamaged.

123

ICARC FOX Transmitters: 102-73181 KC0JFQ

6.3 Parts Ordering

The parts in the project were ordered from DigiKey and Mouser.
The most convenient file to use for ordering is the 102_73181_10.DigiKey_bom.csv which can
be used to load a DigiKey cart up using the BOM manager. There will, no doubt, be some parts
that will need attention due to becoming obsolete or simply not being currently in stock. Spe-
cific parts are non-critical as long as 1% parts are used for resistors and BP/NPO parts are used
where values are specified in PF. Use BX/X7R for remaining ceramic capacitors (those with val-
ues expressed as UF).
Although the standard package used for capacitors and resistors is the 0805 so that part mark-
ings are somewhat legible, there are quite a few parts that are 0603 packages to improve perfor-
mance (bypass capacitors) or simply to reduce footprint.

6.4 Parts Labels

A printable file is generated to print labels on 10-up or 14-up label stock. Print the
102_73181_10.lbl.ps file if the parts labels make assembly easier for you.
The Idx# number matches up in all the parts lists.

6.5 Parts Placement

Print the 102_73181_10.mbr.ps file which is a comprehensive parts list grouped by part value.
The Component MIT column has the part location on the circuit board (expressed in inches).
The zero reference is the lower left corner of the board as viewed from the top. The Comp S/N
column indicates the side on which the part is located as well as the parts schematic location.
The Idx# column number matches up in all the parts lists. Later board layouts, i.e. the
102_73181_10_pwb.pdf drawing, has a scale referenced to the board zero point on both sides
of the board.
Load surface mount resistors and ceramic capacitors first. These are the low profile parts that do
not interfere with larger parts.
Most tantalum caps and inductors can be installed next. Delay installing large parts that may
impede access to active parts (i.e. the X4 crystal gets in the way of installing U22).
Active devices can be installed next with the exception of the 5V regulator which has a rather
high profile. Note that once you begin installing active devices, careful static discipline must be
observed or damage may result. Always handle the boards on a static dissipative surface, use dis-
sipative wrist straps and always store the boards in static bags.
Finish off with the large parts with the exception of the battery and the 5V regulator. See the
regulator notes in the next section. The backup battery will be installed after some initial test-
ing.
Clean your board. 99% ethanol or 99% isopropanol works well. 70% isopropanol (rubbing alco-
hol) should be avoided.

124

ICARC FOX Transmitters: 102-73181 KC0JFQ

6.5.1 5V Regulators
Verify the pinout and orientation of the 5V switching regulator when installing this
part.
There are two variants of the vertical mount device that can be obtained from DigiKey. Verify
which pin is the input pin and orient the regulator with that pin towards the top edge of the
board. There are extra pads under the device to allow rotating 180°.
Also verify that the regulator will provide adequate current if you plan to make use of the
DRA818/SA818 modules. If you avoid the DRA818/SA818 modules altogether, a 500mA regu-
lator is sufficient.

6.6 Daughter board Mounting
The RF daughter board is mounted using two or three 12mm spacers and pan head machine
screws.
The two spacers along the bottom edge are located between the mounting screws. These are both
drilled for 3mm fasteners. The third hole, located to the right of the zNEO chip is drilled for a
2.5mm fastener.
The 12mm height allows the RF daughterboard to fit within the specified enclosure. It also pro-
vides adequate room for the BNC connector.

We can also provision with #4 and #3 fasteners using 0.472" or 0.500" spacers. Note, however,
the #3 spacers are very difficult to find, hence the move to metric dimensioned fasteners.
Also keep in mind that the 0.472" dimension is 12mm, so choose this dimension to maximize in-
terchangeability.

Daughter board connectors and the associated motherboard connectors must be mated and then
soldered (do not solder these connectors unless they are mated with the boards fastened together
with the 12mm spacers). This keeps the connectors properly aligned to allow free interchange of
the daughter boards.
The motherboard would nominally have the socket connectors (Sullins PPPC031, PPPC041, and
PPPC061) installed on the motherboard. The daughter board pins are cut from a strip (Sullins
PBC36SAAN or PBC36SABN) with a mating length of 0.230" and a tail length of 0.120" or
0.230". Excess length being trimmed after soldering.
Assemble the mating parts, insert them into the board pair and install the fasteners. Press the
connector assembly toward the motherboard and solder. We assemble these with the RF daugh-
terboard mated to a motherboard to get the vertical spacing right and to force proper alignment
of the connectors.
The prototype build required both a 102-73181-26 and a 102-73161-29 board to get all the sock-
ets installed on the motherboard. When building multiple transmitters, pin headers can be
mounted on spare 102-73181-26 and 102-73161-29 boards to speed up installation of the sockets
on the motherboard.
Multiple RF amps can be dealt with in the same manner, using a spare 102-73181-10 board with
socket headers installed to mount all the pins on your set of RF amplifier boards.

125

ICARC FOX Transmitters: 102-73181 KC0JFQ

126

Chapter 7

Haywires

Several wiring modifications may be made to the boards to improve function. These updates re-
quire adding haywires and possibly some passive parts.

Currently, the 102-73181-10 board are built without any haywires.

7.1 Audio/Voice

This wiring hack is available to enable audio capability on the 102-73161-25 board.
This consists of a resistor between U1-45 and TP4. Software in the zNEO explicitly configures
U1-46 as an input to allow U1-45 and U1-46 to be shorted. TO apply this hack obtain a 1/20W
750Ω (680Ω or 820Ω will also work) resistor and suitable sleeving.
Estimate the position of the resistor between U1-46 and TP4 and cut sleeving to an appropriate
length. Tin the lead ends and the slide the sleeving into place. One the U1 end of the resistor,
bend one side of the resistor to 90o and trim it to fit U1 (about 0.025"). Solder the prepared end
to U1-45 and U1-46 by holding the resistor body vertically. You can then bend the resistor down
to the surface of the circuit board and fit the other end to TP4 and solder.

7.2 TOY Clock Battery Maintenance
This affects the 102-73161-25 and 102-73181-0 boards.
This hack adds a charging circuit to keep the TOY clock battery fully charged when the trans-
mitter is left switched off with batteries left in place.

127

ICARC FOX Transmitters: 102-73181 KC0JFQ

Figure 7.1: Charge Circuit

For this we add a 1N3595 low leakage diode in
series with a 1M to 4.7M resistor between the
battery connector J2 and the clock battery
B2. The diode band cathode is towards clock
battery B2.

This provides about 1uA of current from the
main battery, which is assumed to be a 6-cell
alkaline pack, to the backup battery and the
TOY clock. The TOY clock requires about
half of this (about 500nA) to keep its 32KHz
oscillator running with the remaining 500nA
being driven through the backup battery.
This image is of the 102-73161-25 artwork,
but earlier revisions are similar. Connect the
top of the diode/resistor set to the 12V pin on
the battery header (on the -25 artwork there
is a convenient via that may also be used, as
shown at the right). The other end is con-
nected to the the via on the positive lead of
the coin cell.
The diode/resistor is insulated with heat-
shrink and hot-melt glued to the backside of
the circuit board.

This function is present on the 102-73181-5 artwork. albeit in a slightly more sophisticated form.
The 102-73181-5 circuit provides better current regulation as the main battery voltage falls.

Figure 7.2: Regulated Charge Circuit

R60/DZ1 form a 4.0V regulated supply that is
dropped across R61/D6 to supply current to
the coin cell and the DS1672. This is intended
to keep the battery (BT1) floating at about 3
volts.
The 1N3595 was chosen for very low reverse
leakage current. A 1N4148/1N914 may be
substituted.
The 102-73181-10 circuit board is provisioned
to accommodate either the ML-1220 battery
(no longer in production) or a 12mm coin
cell holder. The 12mm coin cell holder fits a
CR1220 or BR1220 lithium cell. The charge
circuit limits the current passed through to
the battery and TOY clock to on the order of
about a microamp, keeping it compatible with
the use of primary (non-rechargeable) cells.
The main battery, then, should supply current
to the TOY clock keeping the backup battery
stable for a long period of time.

128

Chapter 8

Commissioning

Initial Testing

8.1 Basic Tests

Some sanity checking to look for cold or missing solder joints and shorts.

Voltages

Apply power and verify the 5V and 3.3V rails are at the correct voltage. Two ground pads
are located near the static symbol (left edge of board).
Check positive end of C4 for battery voltage.
Check 5V regulator at vias below the left side of C5.
Check 3.3V regulator.

102-73181-5: at vias below and to the right of VR2.
102-73181-10: at the tab of VR2.

Software Load

Load software into the zNEO (programming header J3).
Attach programming cable to J3 and use the ZiLOG tools (ZDS-II/zNEO) to load the op-
erating software into the Z16F2810.
The programming cable may prevent the zNEO from executing instructions, you may find
it necessary to remove it for the zNEO to operate.

Attach a USB serial cable to J4 and reset the system looking for a prompt through the
serial/USB connection. Communication settings are 57,600 bits/second, 8 bit characters
and no parity.

Reset using reset button, REST command, or by power cycling. Assuming you are con-
nected to a host, expect something like the following.

129

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 8.1: Startup
1s t s 0 1 , 0 0 ∗ ∗∗
2s t s 0 1 , 0 1 ∗ KC0JFQ FOX T r a n s m i t t e r V3 . 7 1
3s t s 0 1 , 0 2 ∗ Z16F2810AG20EG
4s t s 0 1 , 0 3 ∗ Tools Ver : 20230510 <ROM: 2 6 3 7 4 EROM: 8 7 5 6 0 Flash :113934 >
5s t s 0 1 , 0 4 ∗ Flash Prog 0 4 . 2 6 . 0 3 MB85RS512T FLASH_FRAM F u j i t s u 512K−b i t s 2048− r e c o r d s CMD3
6s t s 0 1 , 0 5 ∗ Flash WAVE C2 . 2 0 . 1 9 MX25L256 FLASH_PAGE32 Macronix 262144K−b i t s 4000− s e c o n d s CMD5
7s t s 0 1 , 0 6 ∗ ∗∗

Using the fox_simple utility to load the operating sequence into FRAM and the audio file
system into FLASH.
You may observe progress of the load operation through the serial port.

Failed Software Load

Arrgh! the ZNEO seems to have been damaged?
The author has encountered a situation where the oscillator circuit in the ZNEO is miscon-
figured and will not function. Injecting a 10MHz to 20MHz clock into the ZNEO on the
XIN pin (C21 on the bottom of the board) may allow you to program the device.
Once the device has been successfully programmed, the Flash Option Bits should now be
programmed to correctly configure the oscillator.

8.2 RF Tests, SI5351

Some sanity checking to look for cold or missing solder joints and shorts.
Attach an RF amplifier daughter board (either 102-73161-29 or the 102-73161-28 board)

Configure for the SI5351 and the daughter board in use.

Connect a dummy load or power meter.

Send the BEGN command and verify RF is correct frequency and amplitude.

8.2.1 Xtal Test, SI5351 (20MHz)
The SI5351 can be configured with an RF daughterboard that is specifically made for de-
velopment testing. This board 102-73181-60, provides an SMA connector that is connected
to the CLK0 output of the SI5351.
When fitted to the transmitter mainboard, the SMA connector J4 is connected to a fre-
quency counter that need only deal with the 20MHz crystal frequency (rather than the
144MHz carrier).

If you are making use of the trim caps on the SI5351, command the device to route the
SI5351 oscillator net directly to the CLK0 output pin using an SI5351 diagnostic com-
mand.
Connect J4 to the frequency counter.
Issue the 5351 XTALT diagnostic command.
Trim CT1 and CT2 to obtain 20MHz.
Once you have obtained the correct frequency, power down, remove the test jig, and rein-
stall the RF daughterboard.

130

ICARC FOX Transmitters: 102-73181 KC0JFQ

8.2.2 Xtal Test, SI5351 (144.100MHz)
The SI5351 crystal offset can also be measured if you can measure the carrier frequency
(i.e. up at around 144MHz). A tiny SA analyzer may be used if it is calibrated.

This procedure is performed prior to loading the FRAM.
If using a frequency counter, the SMA connector (J4) on the test board (102-73181-60)
may be used. If using the tiny SA mount any of the low power RF amplifiers the mother-
board and attach a 50Ω load (or the antenna) to the output BNC. The tiny SA will see
adequate signal with its telescoping antenna attached. Start with the tiny SA antenna
collapsed!
Command the frequency to 144.100MHz:

FREQ 144.100

Enable the carrier.
BEGN SILENT

Use the test instrument to measure the actual operating frequency.
Disable the carrier.

DONE SILENT

Calculate the required offset and select the corresponding frequency setup table.
Use the fox_simple utility to load the selected frequency table.
Now that the frequency corrected table is loaded into FRAM, test by selecting a few fre-
quencies:

FREQ 144.150
BEGN SILENT

Measure the carrier frequency.
DONE SILENT

FREQ 144.325
BEGN SILENT

Measure the carrier frequency.
DONE SILENT

The two frequencies should be reasonably close.

131

ICARC FOX Transmitters: 102-73181 KC0JFQ

8.3 RF Tests, DRA818

More sanity checking to look for cold or missing solder joints and shorts.
Attach an RF module daughter board (102-73181-36).
Install the low power jumper JP2 to limit the DRA818/SA818 output level.

Connect a dummy load or power meter (use an external attenuator if necessary to handle
an output level in excess of one watt. The authors experience with the DRA818/SA818
indicates power levels of less than 200mW with JP2 in place on the 102-73181-36 daughter-
board.

Configure for the DRA818.
Select the operating frequency (i.e. FREQ 144.150).
Send the BEGN SILENT command to send RF.

Perform RF tests (i.e. verify frequency is correct)

Send the DONE SILENT command to stop RF.

8.4 Install backup battery

After the unit checks out and is ready to install in its housing, the backup battery may
be installed on the board. We have deferred to this point to avoid discharging the battery
during checkout when the bare board might be stored in a static bag.
You may check to see that voltage is present at the battery when the main (6-cell pack)
battery is installed. You should see around 3 volts at the positive backup battery pad from
the main battery (6-cell pack). Remove the main battery before installing the backup bat-
tery.
Place Kapton tape under the battery to isolate it from the vias that appear under the
backup battery.
Use a terminal program to configure the DS1672 for operation using TOYC NONE. You
may then use the schedule loader to set the TOY clock to the current time.

8.5 Loading FRAM and FLASH

Use the host tools to load the operating configuration commands and waveform data.
Although order is not typically important, try to load the waveform data first followed by
the directory records required by the waveform image. Then the configuration commands
(and schedule) can be loaded.
Keep in mind that the ERAS DEV command clears all of FRAM and will require reload-
ing the waveform data if it is stored in FRAM (102-73161 artwork). V1.54 adds a ERAS
CMD to clear only the first 1024 records. Around V3.50 an additional qualifier was added
to add flexibility: ERAS HALF. This is provided to support the 102-73161 units that have
no FLASH memory. You may find that using very short audio clips speeds sequence devel-
opment. Once your operating sequence is working, substitute back in the full audio wave-
form files.
The directory file produced by the Audio File Utility pwm_audio_util may also be loaded
using fox_simple, although it may be faster to simply copy&paste them for small files.

132

ICARC FOX Transmitters: 102-73181 KC0JFQ

Also keep the FRAM (eras) and FLASH(hera) commands straight! Reloading FRAM is
usually fast due to the small number of records store there. FLASH is much larger and
typically gets bulk erased.

8.5.1 Required Audio Files
For battery condition reports there need to be a set of voice utterances present in the au-
dio file system. In addition to the battery condition fragments we need the callsign and
nickname utterances to be present.
You should, of course, perform a complete checkout on the bench prior to any deployment
to verify the voice clips can be heard and understood.
In any event, the Fox Transmitter will emit a callsign in Morse code at the beginning and
end of message traffic. That behavior is built into the basic operating software.

Battery Condition Reporting
To verbally report on battery condition the audio clips listed in table 8.1 must be present in
the audio file system. Their position within the file system is unimportant, they simply must be
present.
These clips were all recorded for the prototype units and may be used unchanged if you so desire.
The voice isn’t all that great to listen to, so you may prefer to create your own clips.

Table 8.1: Battery Condition Voice Clips

Audio Filename Utterance
BATTV "battery voltage"
BATTI "battery current"
REG5 "5 volt regulator"

V_VOLT "volts"
V_MAMP "milli amps"

POINT "point"
V_N0 "zero"
V_N1 "one"
V_N2 "two"
V_N3 "three"
V_N4 "four"
V_N5 "five"
V_N6 "six"
V_N7 "seven"
V_N8 "eight"
V_N9 "nine"

Operating Frequency Reporting
If you have worked through the ANN= sequence found in section 19.1.6 on page 324 you will
note that there are a couple of TALK commands with a ’freqM’ and ’freqK’ substitution.
These TALK commands announce the operating frequency during the announce message and
will require audio clips be present for this report to be voiced.
This feature is implemented in the ANN= sequence and the fox_simple utility. It does not de-
pend or use anything in the zNEO code other than the TALK command.

133

ICARC FOX Transmitters: 102-73181 KC0JFQ

The table lists the frequency clips loaded into the authors units. If there are other frequencies
you intend to operate on, simply capture the utterance and add it to the audio file system.

Table 8.2: Frequency Announce Clips

Audio Filename Utterance
V_F144 "one four four dot"
V_F145 "one four five dot"
V_F200 "two zero zero"
V_F225 "two two five"
V_F250 "two five zero"
V_F275 "two seven five"
V_F300 "three zero zero"
V_F325 "three two five"
V_F350 "three five zero"
V_F375 "three seven five"

Callsign and Nickname Reporting
You will, in any case, need to digitize utterances for your station callsign and all the nicknames
you require in order to operate.
This example is the audio clips used by the Iowa City Amateur Radio Club.

Table 8.3: Station Announce Clips

Audio Filename Utterance
KC0JFQ "Kay Cee Zero Jay Eff Queue"
W0JV "DoubleU Zero Jay Vee"
FOX20 "fox twenty"
FOX21 "fox twenty one"
FOX22 "fox twenty two"
FOX23 "fox twenty three"
FOX24 "fox twenty four"
FOX25 "fox twenty five"
FOX26 "fox twenty six"
FOX27 "fox twenty seven"
FOX28 "fox twenty eight"
FOX29 "fox twenty nine"
FOX30 "fox thirty"
FOX31 "fox thirty one"
FOX32 "fox thirty two"
FOX33 "fox thirty three"
FOX34 "fox thirty four"
FOX35 "fox thirty five"
FOX36 "fox thirty six"
FOX37 "fox thirty seven"
FOX38 "fox thirty eight"
FOX39 "fox thirty nine"

134

ICARC FOX Transmitters: 102-73181 KC0JFQ

Loading all these nicknames requires more time when loading the FLASH memory. It saves con-
siderable headache, however, when generating operating sequences for eighteen or twenty trans-
mitters.
The individual utterances, the audio files, all in the same location in all the FLASH devices. This
allows using a single copy of the TALK Directory.
With the TALK Directory located in FRAM, erasing and reloading FRAM becomes far easier.

Local Audio
You are, of course, free to add to the audio in the FLASH. Given a larger device, you can store
considerable period of speech or sound effects.
As many of the speech clips were developed by the author, the audio files were added a bit at a
time to the audio file system. The FLASH device is erased to 0xFF pattern and you may change
bits to a zero at any time. You are not, in any way, required to load the FLASH in one go.
During development. you can record updates in the free space of the FLASH device (i.e. at the
end of the current audio data) and the simply update the TALK Directory as needed.

Table 8.4: Silly Voice Clips

Audio Filename Utterance
FD_FOX "I am your field day fox transmitter"

FD_GAZELLE "Hey look at me, I am now a Gazelle"
FD_CATCH "Hey look at me, Catch me if you can!"
FD_TUNA "I am a... Tuna Fish sandwich"

FD_SILLY_8K "All right now, this is getting just plain silly"

This shows a few of the audio clips loaded into the ICARC fox transmitters. Although these clips
reside in the FLASH device, it is not necessary to actually use them. You are free to leave test
clips in place or have special purpose clips stored in the audio file system.

8.6 Power Evaluation

Once a working sequence has been loaded, you can evaluate the performance of the battery
you will be using. This requires exhausting a set of batteries, giving you an idea of a good
setpoint for the battery reporting command BATC.

Start by connecting the antenna connector to a dummy load so you are not transmitting
constantly as this evaluation may take over a day to complete. Remove the TEST and
MAS jumpers so you will operate normally.
Verify that the sequence has BATR commands when idle and active: see section 19.5 on
page 334.
Connect to the target Fox Transmitter with a serial cable and log the traffic using a log-
ging program that time-tags each line of output (such as the halo_term utility).
Switch the Fox Transmitter on and verify that the logging program is collecting data with
timetags. Now simply let the transmitter run until the battery runs out and it stops.

135

ICARC FOX Transmitters: 102-73181 KC0JFQ

Once the Fox Transmitter has stopped operating, the data in the log file may be extracted
and plotted (for an example see section 4.10.2 on page 61). You may notice that the 6-
cell pack needs service at this point as it will not have enough power left to power the RF
section.
The regulated 5V channel may be used to determine when the 5 volt regulator falls out of
regulation. At this point the RF subsystem will produce lower power as it runs from the
5V rail.
At some point, the 5V channel will fall out of regulation, the 5V channel showing below 5
volts. Move back on the plot in time several hours to pick the trip voltage where the Fox
Transmitter will add an SOS call to the battery report (from BATC command). You can
listen for this when you prepare the Fox Transmitter the night before a hunt.
If you select the battery voltage trip point (in the BATC command) correctly, you will
have enough battery to run an entire hunt once the battery low report (i.e. the SOS pat-
tern in the BATC report).
Consider you will have to find your transmitters at the end of the hunt. Having and active
transmitter to track may prevent a lost unit!

Take note of the plot in section 4.10.2 on page 61. The current ramps up as the battery
terminal voltage falls. We eventually reach a point where internal battery resistance pre-
vents supplying enough current to maintain the 5 volt output from the regulator.
The 3.3V regulator for the digital logic remains in regulation allowing the zNEO to con-
tinue to provide battery reports for a short period after there is no longer a stable 5V rail.
The example plot shows a Fox Transmitter with a low power RF amplifier (100mW or
less). Using higher power RF amplifiers will increase current requirements when the RF
amplifier is active drawing the battery down faster. This, of course, will move the point
where the batteries can no longer supply enough current to the regulator to keep the out-
put in regulation.

This example would indicate that a cutoff voltage of 7.20 volts (i.e. set the battery report
to BATC VE 7.20) would be appropriate. This will begin sending the battery low indica-
tion (i.e. code message BATC SOS TTTTTT EEEEEEEEE) when there is about 10
hours of operation left for the unit.
Do keep in mind, however, that using an alternate power amplifier affects the trip voltage
that should be employed.

136

Chapter 9

Software

Breakdown of the zNEO software subsystems.

9.1 Scheduling

The basic scheduling algorithm used to coordinate message transmission has roots in the clocking
methodologies used in the Voyager and Cassini spacecraft. This methodology is carried forward
into the WAVES instrument on the JUNO spacecraft. In addition, two Earth orbiters, the Am-
SAT Fox1D spacecraft HERCI instrument and on the HALOSAT spacecraft.
With this impressive heritage, let us dive into the scheduling algorithm and see how we make use
of it to control message delivery.

9.1.1 Goals
The problem this method addresses is how to schedule multiple activities or events without the
need for communications between these independent events. All that is common to everyone is
a time counter that the same everywhere. So as we continue, we operate under the assumption
that the clocks running in all the FOX Transmitters are operating with identical epochs. Since
all units operate with the same software, clock formats are identical. There is some magic (well,
magic until details are revealed in later sections) that keeps all the clock synchronized.

In the case of our FOX Transmitter, we want to describe or specify a schedule for transmitting
messages that allows multiple transmitters to share a common channel (frequency), with each
transmitter getting some time to speak up and be discovered by the fox hunters.

Start by thinking of all FOXes operating with the same cycle time but all transmitting at differ-
ent time in the cycle. This is a good way to start to understand the scheduling algorithm, but
there is considerable flexibility in the way we describe schedules.

137

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.1.2 Fractional Seconds
Now let us consider what a meaningful time granularity is going to be for our purposes. For
background, the scheduling granularity in the Cassini/RPWS instrument was 125mS and all suc-
ceeding instruments (JUNO/WAVES, Fox1D/HERCI and HALOSAT) has been 40mS. These pe-
riods are driven by the instruments operating cadence.
For our FOX Transmitter we will adopt a scheduling granularity of 1000mS (that is to say one
second). The scheduling method used in all FOX transmitters is the same and relies on all units
having the same time (hence the DS1672 TOY clock).
We can describe any arbitrary schedule that starts on a one second boundary. Given each FOX
will need to transmit for many seconds to provide enough time for a hunter to establish a fix, this
one second scheduling granularity will more than adequate.
The zNEO makes use of an internally derived 10mS interrupt to update the system time. The
TOY clock is read at startup (using the TIME command) and stored in the system time field.
The system time advances 10mS at every 10mS interrupt.

Note, at this point, that the TOY clock doesn’t track sub-seconds. Prior to V3.76 software, we
may choose to load the clock in a synchronous manner (which we do), we spent no effort in the
fox transmitter system to synchronize at the sub-second level. This meant that the group of fox
transmitters would be operating up to 1 second apart.

The V3.76 update changes the behavior of the TIME command to get the system time closer to
that held in the TOY clock. The TIME command polls the TOY clock waiting for the seconds
to change (the polling activity will time-out after one second, so hardware faults will not hang
things up).
When the seconds field in the TOY clock changes, the system time update finally occurs (which
will zero the sub-seconds field). The fox transmitter system time will now be within the RTI
granularity (10mS) of the TOY clock.
Assuming the TOY clock was set synchronously (which the fox_simple utility does) all of the fox
transmitters should be set within 10Ms of each other.

9.2 Scheduling Algorithm
Now we are diving into the heart of the scheduling algorithm.

The schedule is described using two numbers, a period and an offset. Since our granularity is one
second, these numbers will be expressed in seconds.

As you might expect, if we give 4 FOX Transmitters a period of 60 seconds, they will broadcast
once per minute. If we rather casually assume everyone get equal time, that allows 15 seconds
per transmitter.

So far, so good, but there must be a means of keeping them from operating at the same time. As
mentioned above, assume for the moment that the clocks in each FOX are all synchronized (this
should be the case as we updated the time last night!).

138

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.2.1 Scheduling Period
This is the repeat cycle, in seconds.

Every N seconds the cycle repeats (or, you might say, starts).

The start of the period occurs when the system clock divided by the period produces a remainder
of zero. This point is the functional basis for the scheduling algorithm. At any time, the software
can determine when within the period by dividing the system time by the period and taking the
remainder.

9.2.2 Scheduling Offset
This is the offset into the repeat cycle.

Given that we can calculate the when within the period number, we can start a transmission
when this number matches our scheduling offset.

If the 4 FOX units in our rambling example used different offsets, such as 0, 15, 30, and 45, and
the system clocks are all the same, they will transmit their messages in sequence. The messages,
if they are less than 15 seconds in length, will not occur at the same time.
You can well imagine things will get garbled a bit should the message length exceed 15 seconds.

9.2.3 Clock Synchronization
Clock synchronization is achieved by slaving the time in the slave transmitters to a host system.
This requires that all of the transmitters have their clocks updated prior to the event (like, the
night before...).

Note that the TOY clock may need to be read twice at startup (see section 4.8.2 on page 52).

9.3 Scheduling Flexibility
You may notice by now, that a first order schedule might be something like the following:

Table 9.1: Scheduling Example 1
Unit Serial Period Offset
FOX 1 300 0
FOX 2 300 60
FOX 3 300 120
FOX 4 300 180

This gives a 5 minute cycle with no one transmitting in the 4th minute of the cycle.

139

ICARC FOX Transmitters: 102-73181 KC0JFQ

We could specify a schedule like this:

Table 9.2: Scheduling Example 2
Unit Serial Period Offset
FOX 1 100 0
FOX 2 300 50
FOX 3 300 150
FOX 4 300 250

We keep the 5 minute (i.e. 300 seconds) cycle, but have FOX-1 transmitting three times as often
as FOX-2, FOX-3 and FOX-4. The modular arithmetic used to calculate when to transmit keeps
everything in synchronization providing only the scheduling values and a synchronized clock.

9.4 Parameter Substitution in the Fox Transmitter

There is a simple parameter substitution machanism in the Fox Transmitter itself. The goal is to
move all unit-specific setup into the INI= file while keeping all unit-specific information out of
the operating sequences.
The aim is to allow the sequence to be shared, unchanged, between all units in the group.

9.5 TOY Clock
The hardware includes a battery backed Time Of Year clock. This TOY clock keeps a 32 bit
counter that increments once per second. This allows a set of fox transmitters to be configured
and time locked and then they can be powered up independently of each other.

Typically the TOY clock is read using the TIME command when the power is applied (i.e. in
the INI= sequence). The system then keeps track using the 10mS interrupt. Notes on success-
fully setting the time are found in section 4.8.2 on page 52.
We can force reading the TOY clock more often, if needed, by simply issuing the TIME com-
mand at the end of our S*- sequences. This might be used to deal with clock skew caused by
high activity levels during message transmission causing lost 10mS interrupts.

9.5.1 Clock Characteristics
The clock itself is a Analog Devices/MaximIC DS1672. This is a simple 32 bit battery backed
counter that increments once per second.
The time must loaded into the TOY clock prior to first use. The DS1672 has a backup battery
that maintains the time once loaded when the system is not powered.
The 32KHZ oscillator will run for a few months without charging the on-board battery. If the
unit is not to be used for several weeks, the battery maintenance circuit should keep the backup
battery at peak charge as long as the main battery is present.

140

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.6 Code Generator
The code generator is taken almost directly from the the radio audio interface from 2013. All
that is changed is the interrupt handling for the zNEO that differs slightly from the eZ8-Encore
used in the radio audio interface.
A short message, of up to about 25 characters, is fed into the code subsystem for processing and
transmission. Long messages may be built up of any number of short buffers that will fit in the
FRAM.
The message text is translated into many code chips that are used to drive the interrupt routine
controlling the tone generator.

9.6.1 WPM Rate Control
The speed with which the code message is sent is controlled through the command interface and
specified directly in words per minute. The WPM rate is stored in the configuration structure by
command decoding. During message transmission, this WPM rate is used to set the rate that the
interrupt service routine is activated. The ISR activation rate is programmed to be the length of
a single DIT.
All subsequent timing is directly linked to the duration for a single DIT.

9.6.2 Chipping
This chipping refers to the method of controlling the tone generator from the ISR. Each pass
through the ISR causes a decision to be made concerning the state of the tone generator either
enabled or disabled. Each chip has and on/off bit and a count. The on/off control bit is used to
drive the enable control on the tone generator and the count is decremented each pass through
the ISR until it reaches zero. When this count reaches zero, the chip is discarded, and the ISR
moves on to the next chip in the buffer.
Each chip controls a single on/off transition. The letters O and S both have 6 chips, 3 on peri-
ods, 2 off periods and an inter-character or inter-word gap. Although they both require 6 chips to
store they take rather different times to execute.
After all the chips in the buffer have been sent, the ISR disables itself and leaves an indication
for the main-line code that the buffer has been sent. The main-line code can then fetch the next
message fragment and translate from clear-text into a chipping buffer.

9.6.3 Chirping
This chirping refers to sending modulated or unmodulated RF in short chirps. The CHRP com-
mand controls this with details of setting this up in section 10.2.25 on page 196

141

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.6.4 Morse Translation
Translation from clear-text to chips makes use of a lookup table. The lookup table consists of an
ASCII character key and a short buffer containing the dots and dashes. The code routine takes
the incoming message text, byte by byte, and builds the chipping buffer using the dot and dash
indicators in the translation table. Inter character spacing is driven by punctuation; a space or
comma generates inter-word timing and a period generates inter-sentence timing.
The code generator timing is controlled by the parameters in the CWPM command. The pa-
rameters specify the chipping rate (expressed in nominal words per minute), the DIT time (nor-
mally 1), the DAH time (normally 3), the INTER CHARACTER time and the INTER WORD
time.
The chipping rate field is used to calculate the register values that are loaded into the timer that
generates the interrupt stream driving the code generator.
The translation process proceeds through the input buffer byte-by-byte performing a lookup in
the CODE TABLE to find DIT/DAH/INTER CHARACTER. These are then loaded into the
chipping buffer with the CHIP COUNT field coming from the values provided in the CWPM
command.
Once the entire message has been translated into a chipping buffer, the interrupt for the code
generator is enabled and the interrupt handler proceeds through the chipping buffer, turning the
audio source on/off as specified.

Listing 9.1: cmd_code.h-59
59#d e f i n e CODE_DIT ’<’
60#d e f i n e CODE_DAH ’>’

Characters definitions for CODE_DIT and CODE_DAH.

Listing 9.2: cmd_code.c-123
123// Total = 50 elements
124// () = i n t e r c h a r a c t e r
125// [] = interword
126//
127// ch ipp ing ra t e in seconds i s 1 .2/WPM
128// mult ip ly by the r e f e r e n c e c l o ck in to the
129// t imer to s e t the i n t e r r u p t ra t e . . .
130//
131//
132
133rom s t r u c t CODE_TABLE code_table [] = {
134{ ’ ’ , R"W" } , // in t e r −word spac ing
135{ ’_’ , R"W" } , // in t e r −word spac ing
136{ ’ , ’ , R"W" } , // in t e r −word spac ing

Timing characters.

142

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 9.3: cmd_code.c-138
138{ ’ : ’ , R"S " } , // co lon (in time s t r i n g)
139{CODE_DIT, R" . " } , // d i t
140{CODE_DAH, R"−" } , // dah
141
142{ ’ ? ’ , R" . . − − . . " } , // ques t i on
143{ ’ ! ’ , R" . − . . − . " } , // bang
144{ ’/ ’ , R" − . . − . " } , // s l a s h
145{ ’& ’ , R" . − . . . " } , // ampersand
146{ ’= ’ , R" − . . . − " } , // BT (begin 2 l i n e s)
147{ ’+ ’ , R". − . − . " } , // AR (a l l r e c e i v e d)
148{ ’ − ’ , R" − − " } , //
149{ ’ $ ’ , R" . . . − . . − "} , //
150{ ’@’ , R".−−.−. " } , //
151{ ’& ’ , R" . − " } , // ampersand (wait)
152{ ’ ; ’ , R"−.−.−. " } , //

Punctuation characters.

Listing 9.4: cmd_code.c-154
154{ ’) ’ , R"−.−−.− " } , //
155{ ’ \ ’ ’ , R".−−−−. " } , //
156{ ’_’ , R"..−−.− " } , //
157
158{ ’A’ , R". − " } ,
159{ ’B’ , R" − . . . " } ,
160{ ’C’ , R"−.−. " } ,
161{ ’D’ , R" − . . " } ,
162{ ’E’ , R" . " } ,
163{ ’F ’ , R" . . − . " } ,
164{ ’G’ , R"−−. " } ,
165{ ’H’ , R " " } ,
166{ ’ I ’ , R " . . " } ,
167{ ’J ’ , R".−−− " } ,
168{ ’K’ , R"−.− " } ,
169{ ’L ’ , R" . − . . " } ,
170{ ’M’ , R"−− " } ,
171{ ’N’ , R" −. " } ,
172{ ’O’ , R"−−− " } ,
173{ ’P’ , R".−−. " } ,
174{ ’Q’ , R"−−.− " } ,
175{ ’R’ , R" . − . " } ,
176{ ’S ’ , R " . . . " } ,
177{ ’T’ , R"− " } ,
178{ ’U’ , R" . . − " } ,
179{ ’V’ , R" . . . − " } ,

Alpha characters.

143

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 9.5: cmd_code.c-181
181{ ’X’ , R"−..− " } ,
182{ ’Y’ , R"−.−− " } ,
183{ ’Z ’ , R"−−.. " } ,
184
185{ ’0 ’ , R"−−−−− " } ,
186{ ’1 ’ , R".−−−− " } ,
187{ ’2 ’ , R"..−−− " } ,
188{ ’3 ’ , R".. . − − " } ,
189{ ’4 ’ , R" − " } ,
190{ ’5 ’ , R " " } ,

Number characters.

Listing 9.6: cmd_code.h-16
16//
17// CHIP
18//
19// +−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+
20// | | | | |
21// +−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+
22// ^ ^ ^ \ /
23// | | | \ /
24// CHIP_ACTIVE −−−+ | | \ /
25// | | \ /
26// CHIP_KEY_ON −−−−−−−+ | \ /
27// | |
28// CHIP_GAPPED −−−−−−−−−−−+ |
29// |
30// CHIP_COUNT (i . e . i n t e r r u p t count)−−+
31//−−−
32//

Chipping Buffer Layout.
This is the buffer used at interrupt level to provide on/off control of the CW tone. The chipping
rate (i.e. the WPM rate) is driven by the interrupt arrival rate. The interrupt timer is set to the
time of a single chip (i.e. dit) .
Each element in a character takes two bytes in the buffer. First byte has the audio ON time and
the second has the audio OFF time.
Longer inter-element spacing is encoded with a larger value in the CHIP_COUNT field.

9.6.5 Interrupt Activity
The interrupt initiation entry point calculates the values that are to be loaded into the timer
control registers to run the ISR at the target rate. The buffer address, passed from the calling
routine, is stored where the ISR can access it and the interrupt for the timer is enabled and the
timer itself is enabled.
The interrupt initialization routine then waits for the message to be sent before returning control
to the main-line code.

144

ICARC FOX Transmitters: 102-73181 KC0JFQ

The interrupt service routine services each interrupt by decrementing the CHIP_COUNT field to
zero and moving on to the next chip.
At the start of a new chip we first look at the CHIP_ACTIVE bit, looking for an end-of-buffer
indicater (when chip is zero). The interrupt routine then deals with the CHIP_KEY_ON bit,
which is the state for the TONE_ENABLE net.
The CHIP_GAPPED is used for debugging.

9.6.6 Timeout Conditions
As the activities described above are well bounded, we do not expect to require a watch-dog fa-
cility. There is none-the-less a timer that is started at the beginning of each message buffer that
will release the wait if the message takes too long to send.
Should this occur, is is an indication that the specified WPM rate is too slow of the message it-
self is too long.
This is remedied by changing the offending schedule.

9.7 Audio

Audio waveform generation is program controlled; minimal hardware assists are involved in this
process. The zNEO is operating a busy-wait loop to move data from FLASH (or FRAM) to the
PWM block in the zNEO.
Errors in the directory records can cause problems.

9.7.1 Directory Record

One record describes each audio clip. If the audio clip is an 8-bit mono RIFF/WAVE file, the
second form should be used with the sample rate and sample count coming directly from the
RIFF/WAVE header.
TALK=<name>,<start>,<count>,<address>
TALK=<name>,<start>

9.7.2 Waveform Data

Loaded into FLASH using InTel Hex records.
This is raw 8-bit PCM data. It may have a RIFF/WAVE header that describes the length of the
data block and the sample rate. Sample rates are limited to 4K/s, 5K/s, 8K/s, 10K/s, or 16K/s.
Date width must be 8 bits and the data must be single channel.
The data will not be used if the RIFF/WAVE header indicates stereo or 16 bit data.

145

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.8 Status Reports (commanding)

Whenever an activity occurs within the system, a status report is produced and delivered to the
control port (USB or the 3.5mm serial jack).
These reports have a style to them that is intended to make decoding by a host computer easy to
implement.

All status messages consist of a 3 letter key, a numeric command index followed by a comma, a
numeric status value that is the followed by an asterisk.
Additional text may follow the asterisk that is intended to be human readable.

These reports tend to be rather chatty, with a great deal of information used to debug the soft-
ware. There is also extensive help text that can be called up when needed. The time required
to pass all this traffic seems like it would get in the way when operating, but the volume of text
traffic resulting from the commands that are used to actually implement a fox sequence is not
that large.

9.8.1 RDY

When the input processing loop becomes ready to accept a command, a RDY report is sent out
on the control port. A command may come in through the serial channel. The system may also
process an internal sequence if scheduling is enabled.

The numeric command index should be zero.

The numeric status value indicates the current state of the run flag. The run flag must be set to
1 in order for scheduled sequences to execute.

Example RDY reports:

RDY00,00* (Sp=0xBF94)+1870 00:00:04.790
RDY00,01* (Sp=0xBFD8)+1938 15:01:13.970

The report contains some diagnostics and the system time.
Note that the first example, the second status field is zero, indicating that the run flag is
currently cleared. No scheduling occurs when the run flag is cleared.
In the second example, the second status field is one, indicating that the run flag is cur-
rently set. The Fox Transmitter will transmit traffic when the scheduling point is reached.
The diagnostic part of the line is the current stack pointer location (hexadecimal) and the
free space (decimal) on the stack. The zNEO has only 4KB of RAM, so the would expect
the free space on the stack to report around 1800 bytes.
The system time is taken from the time field that the system keeps. It requires setting
from the TOY clock to have any relation to the real world.

Sending a carriage return should cause a RDY report to be returned. Use this behavior to check
the clock alignment (i.e. how well it matches wall-clock time).
An empty command (carriage return alone) will clear the run flag.

146

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.8.2 STS

When a command is completed, this status message reports on the success of the command. This
report, where the STS is uppercase, only occurs when the system is ready to accept command
traffic from the serial port. In other words, a running sequence never sends out STS is upper-
case.

The numeric command index is the internal index of the command. This numeric value is gen-
erated by the first step of the command decoding process. It will be positive if the 4 letter com-
mand stem is recognized. Unrecognized commands will have a negative value in this first field.

The numeric status value indicates if the arguments to the command are correctly formed and
have been accepted. A positive value indicates the command was correctly formed and has been
executed. A negative value here indicates that the arguments were mal-formed. run flag. The run
flag must be set to 1 in order for scheduled sequences to execute.

An example STS report:

STS01,47* Handler_HELP (cmd_help.c*) 2.80 Sec

The report shows the handler that produced the text along with the module in which the
handler lives.
Also note the execution time of the command is shown.

9.8.3 sts

This report (note that sts keyword is lowercase) is part of any intermediate result reporting.
The numeric command index is the internal index of the command.

The numeric status is normally a simple counter that tallies each of the lines generated by the
command.

An example sts report (begining reports from a HELP command):

sts01,01* 1 HELP SYS Help Menu and Items
sts01,02* 2 HELP SYS <string> matching help items
sts01,03* 3 ONCE SYS <name> Test run the named sequence

The report content is unique to each command and presents status and diagnostic informa-
tion about the execution of the command.
The sts01,01* portion of the report is always formatted the same. The numeric command
index followed by a sequence number. The asterisk marks the end of the report header.

The subsequent text is generally human readable.
Reports that are intended for computer consumption are typically formatted as
KEY=Value pairs. See the sample report in section 4.10.2 somewhat after page 61.

147

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.9 Signon Report

This report is produced when the system is reset. This occurs whenever the reset pin on the
zNEO is cycled low to high.
Sample signon message:
sts01,00* **
sts01,01* KC0JFQ FOX Transmitter V3.71
sts01,02* Z16F2810AG20EG
sts01,03* Tools Ver: 20230510 <ROM:26374 EROM:87560 Flash:113934>
sts01,04* Flash Prog 04.26.03 MB85RS512T FLASH_FRAM Fujitsu 512K-bits 2048-records CMD3
sts01,05* Flash WAVE C2.20.19 MX25L256 FLASH_PAGE32 Macronix 262144K-bits 4000-seconds CMD5
sts01,06* **

9.9.1 sts01,01: Version

Author, Project Name, and Build Version from the MAKEFILE.

9.9.2 sts01,02: zNEO Hardware

zNEO part number from the zNEO device.
The older boards use an 80 pin flat pack while the newest board make us of a 64 pin flat pack.
Both packages are available as a Z16F2810 or Z16F2811. These are both 128KB flash devices
with an identical peripheral complement. The Z16F64 and Z16F32 devices have a smaller pro-
gram flash that is too small to hold the current software.

9.9.3 sts01,03: Tools Ver:
This line displays the date string from the ZiLOG development tools used to build the software
system for the fox transmitter. It is in the form of year/month/day to reflect when the tools were
compiled at the vendor.
Also appearing on this line are the flash memory allocations in the zNEO processor. The compil-
er/linker from ZiLOG breaks the zNEO flash allocation into two groups called ROM and EROM.
The memory use under each location counter is reported. The total memory use is also reported
(it is the sum of ROM and EROM allocations).

9.9.4 sts01,04: Flash Prog (U3)

JEDEC ID from the FRAM device.
If the device appears in the device table (in the fox transmitter software) the part number and
capacity are reported.

9.9.5 sts01,05: Flash WAVE (U12)

JEDEC ID from the FLASH device.
If the device appears in the device table (in the fox transmitter software) the part number and
capacity are reported.

148

ICARC FOX Transmitters: 102-73181 KC0JFQ

This report, taken from FOX29, shows a very large FLASH device is installed on the board.
The MX25L256 is large enough to require sending it a 32 bit address (indicated by the
FLASH_PAGE32 string).

9.10 Status Report (STAT I command)

This command is used to dump the module identification strings.
This will emit a number of lines, each with the ID string from one of the modules that make up
the operating software of the fox transmitter system.
The string has the compile time of the individual module, the version number of the module, and
the module name.

149

ICARC FOX Transmitters: 102-73181 KC0JFQ

Sample STAT I report (truncated):
sts09,00* <<<--- STAT ******** STAT --->>>
sts09,01* IDENT:Mar 31 2025 15:50:10 V3.89 fox_73181.c*
sts09,02* IDENT:Mar 31 2025 15:50:28 V3.05 gpio_local.c*
sts09,03* IDENT:Mar 31 2025 15:50:27 V2.05 timer_local.c*
sts09,04* IDENT:Mar 31 2025 15:50:28 V1.03 uart_local.c*
sts09,05* IDENT:Mar 31 2025 15:50:30 V3.12 flash_local.c*
sts09,06* IDENT:Mar 31 2025 15:50:29 V1.03 i2c_local.c*
sts09,07* IDENT:Mar 31 2025 15:50:29 V1.00 analog_local.c*
sts09,08* IDENT:Mar 31 2025 15:50:11 V3.23 command.c*
sts09,09* IDENT:Mar 31 2025 15:50:13 V1.03 cmd_help.c*
sts09,10* IDENT:Mar 31 2025 15:50:12 V1.04 cmd_code.c*
sts09,11* IDENT:Mar 31 2025 15:50:13 V3.27 cmd_stat.c*
sts09,12* IDENT:Mar 31 2025 15:55:10 V1.19 cmd_conf.c*
sts09,13* IDENT:Mar 31 2025 15:50:16 V1.16 cmd_message.c*
sts09,14* IDENT:Mar 31 2025 15:50:17 V3.10 cmd_sa818b.c*
sts09,15* IDENT:Mar 31 2025 15:50:17 V1.10 cmd_si5351.c*
sts09,16* IDENT:Mar 31 2025 15:50:20 V0.02 cmd_ics525_dummy.c*
sts09,17* IDENT:Mar 31 2025 15:50:20 V1.08 cmd_sys.c*
sts09,18* IDENT:Mar 31 2025 15:50:20 V1.00 cmd_proc.c*
sts09,19* IDENT:Mar 31 2025 15:50:21 V1.01 cmd_sched.c*
sts09,20* IDENT:Mar 31 2025 15:50:21 V1.05 cmd_time.c*
sts09,21* IDENT:Mar 31 2025 15:50:21 V3.04 cmd_test.c*
sts09,22* IDENT:Mar 31 2025 15:50:22 V3.14 cmd_voice.c*
sts09,23* IDENT:Mar 31 2025 15:50:23 V1.12 cmd_battery.c*
sts09,24* IDENT:Mar 31 2025 15:50:22 V3.05 cmd_flash.c*
sts09,25* IDENT:Mar 31 2025 15:50:23 V3.08 cmd_frequency.c*
sts09,26* IDENT:Mar 31 2025 15:50:23 V1.02 cmd_wav.c*
sts09,27* IDENT:Mar 31 2025 15:50:27 V1.06 fox_schedule.c*
sts09,28* IDENT:Mar 31 2025 15:50:12 V2.01 radio_control.c*
sts09,29* IDENT:Mar 31 2025 15:50:30 V1.00 daytime.c*
sts09,30* IDENT:Mar 31 2025 15:50:11 V1.00 modulus.c*
sts09,31* IDENT:Mar 31 2025 15:50:31 V3.22 intel_hex.c*
sts09,32* IDENT:Mar 31 2025 15:50:24 V1.00 test_help.c*
sts09,33* IDENT:Mar 31 2025 15:50:24 V1.00 test_spi.c*
sts09,34* IDENT:Mar 31 2025 15:50:24 V1.00 test_zneo.c*
sts09,35* IDENT:Mar 31 2025 15:50:25 V1.00 test_i2c.c*
sts09,36* IDENT:Mar 31 2025 15:50:25 V1.02 test_gpio.c*
sts09,37* IDENT:Mar 31 2025 15:50:25 V1.00 test_batt.c*
sts09,38* IDENT:Mar 31 2025 15:50:26 V1.01 test_code.c*
sts09,39* IDENT:Mar 31 2025 15:50:26 V1.01 test_serial.c*
sts09,40* IDENT:Mar 31 2025 15:50:26 V1.00 test_config.c*
sts09,41* IDENT:Mar 31 2025 15:50:12 V1.00 ident_scan.c*
sts09,42* KC0JFQ FOX Transmitter V3.95
sts09,43* Software Bld: Mar 31 2025 15:50:13

The rest of the STAT report has been removed, leaving only the module report detail lines.

9.11 Status Report (STAT command)

This command is used to dump the system status, reporting on all of the programmable system
settings. This also includes hardware state and settings that are not programmable, but may
change as determined by installed hardware or readings from the A/D subsystem, etc.

150

ICARC FOX Transmitters: 102-73181 KC0JFQ

Sample status report:
sts09,00* <<<--- STAT ******** STAT --->>>
sts09,01* KC0JFQ FOX Transmitter V3.71
sts09,02* Software Bld: Jun 24 2024 21:14:15
sts09,03* System Time: 16:49:23.740 (78563)
sts09,04* Epoch Offset: 19:00:00 (68400)
sts09,05* TOY Clock: 00ADE764 00 00; Osc ON, Charge Disabled
sts09,06* Sys Upd Flg: Si5351_INIT
sts09,07* Conf Jumpers: NOT_Master NOT_Test
sts09,08* Flash Prog U3: 04.26.03 MB85RS512T FLASH_FRAM Fujitsu 512K-bits 2048-records CMD3
sts09,09* Flash WAVE U12: C2.20.19 MX25L256 FLASH_PAGE32 Macronix 262144K-bits 4000-seconds CMD5
sts09,10* Flash HEX Dev: WAVE/FLASH/U12
sts09,11* Battery, Idle: 8.698V(0x037C)[9.751e-03] 40mA(0x0051)
sts09,12* Battery, TX: 8.483V(0x0366)[9.751e-03] 5mA(0x000A)
sts09,13* Analog Others: Reg-5V: 5.110V(0x020C)[9.751e-03] Switch: 0.000V CdS-Cell: 0.000V
sts09,14* UART buffer: 143 (NET:0, USB:85)
sts09,15* <<<--- Scheduling PARAMETERS --->>>
sts09,16* MOD Schedule 00 Idle S0= 360 180
sts09,17* MOD Schedule 01 Idle S1= 30 0
sts09,18* MOD Schedule 02 Idle S5= 60 0
sts09,19* MOD Schedule 03 Idle S6= 10 0
sts09,20* MOD Schedule 04 Idle S7= 300 0
sts09,21* MOD Schedule 05 Idle S9= 300 0
sts09,22* <<<--- TRANSMITTER PARAMETERS --->>>
sts09,23* Callsign: W0JV
sts09,24* Nickname: FOX29
sts09,25* zNEO Port Bits: OUT:E0,01,05,20,00,00,00,00 IN:F0,01,75,14,00,80,00,04
sts09,26* Radio Config: 0x1F0C43 SI5351 State-T0 TX_ENA TONE PWMH0 5MON SWIT PHOTO IMON VMON
sts09,27* Si5351 Config: 0x00B9 CLK0 8MA 8PF Offset:-10.000KHz
sts09,28* Si5351 Divisor: 0x13A5,0xA9EBF,0xF4240 0x0100,0x00,0x01
sts09,29* Frequency: 144.325 (Xtal: 20.000 MHz)
sts09,30* CW config: 30 WPM 1,3,7,14 [0x186A] 1.000KHz
sts09,31* State Delays: T0:10 T1:50 T2:150 T4:50 T5:10
STS09,32* Handler_STAT I (cmd_stat.c*) 0.40 Sec
RDY00,00* (Sp=0xBF94)+1859 16:49:24.120

9.11.1 Software Bld:

Date and time the software was compiled. This date-stamp is taken from the cmd_stat.c module.

9.11.2 System Time:

The time currently stored (and updated) by the fox transmitter software.
This time is nominally stored as UNIX time (in terms of UT).

9.11.3 Epoch Offset:

Time zone offset from UT (hours). West is negative. Iowa is -5 in the summer.

151

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.11.4 TOY Clock:

Register dump of the DS1672 TOY clock.
32 bits of the time register. This is arranged with the MSB on the left of the field.
8 bits of register 4 where the ESOC bit appears in bit D7.
8 bits of register 5 where the charge control bit appear.

9.11.5 Sys Upd Flg:

System Update Flag indicates that the system time field has been loaded from the TOY clock
and when the SI5351 has been initialized.

9.11.6 Conf Jumpers:

Shows the presence of the TEST and MAS jumpers.

9.11.7 FRAM Prog U3:

Dump of the JEDEC ID bits from the U3 position.
This is where a FRAM device should be installed.
Some devices do not support the Read-ID command leaving this field set to all 1s. If this is the
case or when no device is installed, the device is treated as a 64Kb device. If installed device is
smaller, loading commands into the device may cause a wrap-around to occur and overwrite com-
mands at the beginning of the device (don’t do that!).
When no device is installed, reading will yield all 1s which appears as an erased device.

9.11.8 FLASH WAVE U12:

Dump of the JEDEC ID bits from the U12 position.
This is where a FRAM device should be installed.
Some devices do not support the Read-ID command leaving this field set to all 1s. If this is the
case or when no device is installed, the device is treated as a 64Kb device. This is too small for
practical use and should indicate a bad device or no device installed.

9.11.9 Flash HEX Dev:

This is the device on which the InTel HEX commands operate.
This is for the 102-73161 boards where a single device appears on the circuit board.
For the 102-73181 boards this should report WAVE indicating the InTel HEX commands work
on U12.

9.11.10 Battery, Idle:

Voltage and current readings when the system is idle.
The 102-73161 boards will not report current.

152

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.11.11 Battery, TX:

Voltage and current readings when the system is transmitting.
The 102-73161 boards will not report current.

Notice that this report shows an unusually low current reading when transmitting. The high-RF
environment affects Q2 resulting in an inaccurate current reading. More accurate readings may
be obtained by loading the antenna port with 50 ohms when making current measurements.

9.11.12 Analog Others:

This reports the other analog channels that are present on the motherboard.

9.11.13 UART buffer:

Size of the UART buffer and the maximum number of bytes that have been used (i.e. characters
have been stored).
This is a sanity check for software debugging.

9.11.14 Callsign:

This reports the callsign stored by the CALL command.
Prior to the occurrence of a CALL command, this field contains SOS SOS SOS to indicate that
a problem exists.

9.11.15 Nickname:

This reports the callsign stored by the NAME command.
Prior to the occurrence of a NAME command, this field is empty. Field substitution results in
nothing being stored.

9.11.16 zNEO Port Bits:

Diagnostic dump of the zNEO general IO port bit patterns.

9.11.17 Radio Config:

Dump of the radio configuration bits.
The CONF command is used to set/clear these bits and this is a quick report of their status.
The CONF command with no arguments provides a detailed report of the current bit states
along with the mnemonics used to set/clear them.

9.11.18 Frequency:

Currently selected transmit frequency.

153

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.11.19 CW config:

Code chipping parameters.
The word rate and timing parameters for the code generator.

9.11.20 State Delays:

To accommodate the various RF generator configurations, BEGN and DONE commands imple-
ment the delays defined in figure 4.15 on page 42.
The T1 state is set to milliseconds for the ICS307, ICS525, and SI5351, while the
DRA818/SA818 modules require about 2 seconds to awake from a powered down state.

9.12 I2C

Notes on the operation of the I2C subsystem.
The current software is a bit-banged implementation of the I2C protocol. The volume of traffic is
so low there is not driving need to use the I2C hardware in the zNEO.
The inter-bit timing can be seen on the following ’scope plots.
Nominally, the SDA line is steady when the clock line is high. The I2C implementation keeps the
SDA line steady from at least one µS prior to a rising clock edge to at least one µS after a falling
edge.
The START and STOP conditions expressly violates the rule.
SCK is shown on the top (probe 2). SDA is shown on the bottom (probe 1).

154

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.12.1 I2C START

Figure 9.1: I2C START

Here the SDA line (bottom line, channel 1) goes low when the clock line (top line, channel 2),
SCK, is high.
This violates the rules and is used to indicate a START condition.
The controller (in our case the zNEO) follows the START condition with a 7 bit device address
and a 1 bit direction flag.

155

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.12.2 I2C Data

Figure 9.2: I2C Data

Here we see the I2C device address byte, a data byte, and the start of a second data byte.
Looking at the last bit of the address byte, we see a zero indicating this is a write transaction.
The controller continues to drive the SDA line as it shifts out successive 8 bit words.
Take note of 8 data bits (the narrow clock pulses) and one acknowledge bit (the slightly wider
clock pulse before the small gap. The target device drives the SDA line low after is has com-
pleted processing the last data bit. In this example, the target device begins driving SDA low
before the controller stops driving, so we do not see indication that the target device can’t keep
up.

156

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.12.3 I2C STOP

Figure 9.3: I2C STOP

The last event of the data transaction is the controller asserting the STOP condition.
As with the START condition, a transition on the SDA line occurs when the SCK line is high,
violating the rules. The target recognizes this as the STOP condition and stops sending data dur-
ing a read or stops looking for data during a write.

9.12.4 I2C Write Buffer

The write transaction proceed as shown in the above example.
The controller asserts the START condition, sends out the 7 bit target address followed by a
write bit (a zero bit).
The next byte has the 8 bit device register address.
This is followed by one or more data patterns that are loaded into successive registers in the tar-
get device.

9.12.5 I2C Read Buffer

A read transaction involves a write of the device register address follows by a read of the device
data.
A write transaction with a device address and a device register address is sent. This is just 2 I2C
bytes followed by a STOP condition.
The controller then starts a new transaction. The controller asserts the START condition, sends
out the 7 bit target address followed by a read bit (a one bit).
The controller leaves the SDA line inactive, either driving it to a one (in the case of open-drain
pin) or tri-stating the pin. The target updates the SDA line as the controller pulses the clock
line.
The controller continues to send 8+1 pulses for each needed input byte. When the driver (in the
controller) has satisfied the input request it asserted the STOP condition to end the transaction.

157

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.13 SPI
Access to SPI peripherals, the two memory devices, uses the ESPI function of the zNEO. The
chip select lines, one for each memory device, are managed as GPIO output lines.
Buffer space in the zNEO is limited, so the nominal record size for the memory devices is 32
bytes.

Audo data, from the waveform memory device (U12) is managed a byte-at-a-time. The serial
clock rate is programmed to be 8 times the sample rate so that data bytes are read from the SPI
memory device at the target sample rate. No additional clock resources are needed to deal with
flowing audio data.

9.14 Message Processing

A message, as sent by a properly configured and sequenced fox transmitter, consists of a header,
message body, and trailer. These must be properly loaded into the FRAM in order to have the
system generate reliable and rules compliant message traffic.
The message body may consist of as many message fragments as desired. The message fragments
are sent using the CODE, TALK, SCAL, and BATx commands. CODE generates Morse traffic
from the text in the command. TALK generates audio from the audio file specified in the com-
mand. SCAL sends the system callsign which was stored using the CALL command as part of
the setup commands. Finally, the BATx commands generate battery status messages to allow
convenient monitoring of system health (i.e. how much operating time is left given the reported
battery voltage).
The header, initiated using the BEGN command, configures the RF subsystem for operation by
switching on power and programming the frequency synthesizer and then sending a signon mes-
sage with the station callsign.
The trailer, initiated using the DONE command, send the station callsign, here to comply with
the rules, and returns the RF subsystem to a low power state.

9.15 Frequency Selection

Frequency selection is achieved by multiple means. The software is built with small internal ta-
bles containing bit patterns that are used to configure the clock synthesizer.
For the DRA818/SA818 the frequency string is used directly to setup the transceiver module.
A second method is to store the register setup patterns in FRAM using the ESAV= command.
The frequency entries in FRAM are search before looking through the internal tables. This allows
updated (i.e. corrected) frequencies to be loaded without having to reprogram the zNEO.
A third method is to specify the register patterns directly. This is primarily intended as a debug
aid, but it can be employed when necessary.

158

ICARC FOX Transmitters: 102-73181 KC0JFQ

9.15.1 Internal Frequency Tables
A small frequency setup table is present in the zNEO program image. To correctly generate the
table the actual operating frequency of the reference crystal must be known. The load on the
crystal affects its operating point so trim parts are supplied (CT1 and CT2). These can be in-
stalled although they tend to be a bit expensive. Another method is to generate the tables from
the actual operating frequency of the X5 crystal.
The method used with the ICARC units was to program the zNEO with a nominal frequency
setup table (generated assuming the crystal is operating at 20.000 MHz with a default offset of
0KHz). The output frequency is then measured (with no modulation, in other words no audio)
and an external table is generated with the actual offset required to correct for the transmitter to
operate at the desired frequency.
In practice, it seems reloading the processor is faster than trying to select C58/C41 or trim out
CT1 and CT2. The software suite is compiled with a set of frequency tables with offsets ranging
up to 20KHz (i.e. si5351_frequency_table_0.c to si5351_frequency_table_20.c).
After flashing the fox transmitter with a baseline frequency setup table install the TEST jumper
and run the BEGN command. After the signon message the fox transmitter is left with the RF
generator on, the RF amplifier on, and no modulation on either the VCMO_TONE net or the
PWMH0 nets.
You can measure the carrier frequency and the select the appropriate offset from the group of
si5351_frequency_table_*.c tables, recompile, reload, and then verify that the carrier is now
where it needs to be.
See section on page 188 for a method of connecting the crystal to the OUT0 pin of the SI5351
to allow meauring the crystal directly. This method allows using a less expensive frequency
counter as the crystal is 20MHz, far below the carrier frequency.
We need only be within a half KHz for operating with an FM receiver, so don’t expend enormous
efforts trying to get is spot-on.

9.15.2 Frequency Tables in FRAM
Frequency setup tables can also be stored in sequence FRAM. This avoids the need to have a
ZiLog programmer to update the flash memory in the zNEO device to use a new frequency.
Tables for the SI5351 can more easily be tailored to address issues with the reference clock. In all
of the prototype SI5351 builds, the 20MHz reference crystal was operating off frequency and re-
quired trimming the SI5351 register values. If you have a spectrum analyzer or frequency counter
available to find the carrier frequency, the SI5351 frequency calculation utility can generate a fre-
quency table that is adjusted to eliminate frequency errors.

159

ICARC FOX Transmitters: 102-73181 KC0JFQ

A sample frequency table for storage in FRAM as generated by the si5351a_calc utility:
REM- Call Line: "/home/wtr/Fox_Tx_73181/trunk/si5351a_calc

-T2
-F 144.250,144.300,5
-o-14
-e freq_5351-14.fox "

REM- Output File: freq_5351-14.fox
REM- SI5351 Xtal: 20.000MHz
REM- Freq Offset: -14.000KHz
esav 144.250=13A2,A1B80,F4240
esav 144.255=13A2,D0980,F4240
esav 144.260=13A3,0B540,F4240
esav 144.265=13A3,3A340,F4240
esav 144.270=13A3,6913F,F4240
esav 144.275=13A3,97F40,F4240
esav 144.280=13A3,C6D40,F4240
esav 144.285=13A4,01900,F4240
esav 144.290=13A4,30700,F4240
esav 144.295=13A4,5F500,F4240

The esav lines store the register patterns for the SI5351 in FRAM. This would be a set of fre-
quencies that are not present in tables. The new register values are then loaded into FRAM.
The FREQ command uses the frequency string passed in the command to look for a match-
ing entry in the FRAM. If a matching entry is found in FRAM, the values in the FRAM table
are used to configure the SI5351. Conflicts are resolved by using the values from the FRAM
tables The FRAM can, therefore, be used to override the internal table.
Given that the FRAM is searched before scanning the tables in program flash, we can totally
override the internal tables if needed. We will, of course, need to have enough space in the
FRAM to hold everything, so the size of the FRAM device may becomes an isssue.

160

ICARC FOX Transmitters: 102-73181 KC0JFQ

We can inspect the entries in the FRAM using the EDMP= command:

edmp 145.
sts35,00* Handler_EDMP (cmd_flash.c*) (13) 145.000=13BF,70E40,F4240
sts35,01* Handler_EDMP (cmd_flash.c*) (14) 145.025=13C0,671FF,F4240
sts35,02* Handler_EDMP (cmd_flash.c*) (15) 145.050=13C1,5D5C0,F4240
sts35,03* Handler_EDMP (cmd_flash.c*) (16) 145.075=13C2,5397F,F4240
sts35,04* Handler_EDMP (cmd_flash.c*) (17) 145.100=13C3,49D3F,F4240
sts35,05* Handler_EDMP (cmd_flash.c*) (18) 145.125=13C4,40100,F4240
sts35,06* Handler_EDMP (cmd_flash.c*) (19) 145.150=13C5,364C0,F4240
sts35,07* Handler_EDMP (cmd_flash.c*) (20) 145.175=13C6,2C87F,F4240
sts35,08* Handler_EDMP (cmd_flash.c*) (21) 145.200=13C7,22C3F,F4240
sts35,09* Handler_EDMP (cmd_flash.c*) (22) 145.225=13C8,18FFF,F4240
sts35,10* Handler_EDMP (cmd_flash.c*) (23) 145.250=13C9,0F3BF,F4240
sts35,11* Handler_EDMP (cmd_flash.c*) (24) 145.275=13CA,0577F,F4240
sts35,12* Handler_EDMP (cmd_flash.c*) (25) 145.300=13CA,EFD80,F4240
sts35,13* Handler_EDMP (cmd_flash.c*) (26) 145.325=13CB,E613F,F4240
sts35,14* Handler_EDMP (cmd_flash.c*) (27) 145.350=13CC,DC4FF,F4240
sts35,15* Handler_EDMP (cmd_flash.c*) (28) 145.375=13CD,D28BF,F4240
STS35,16* Handler_EDMP (cmd_flash.c*) 0.80 Sec
RDY00,00* (Sp=0xBF94)+1886 14:15:06.110

The new frequency entries are not position critical as they are used (i.e. search for) when the
FREQ command occurs.

9.15.3 Direct Register Load
See comments on page 188.

161

ICARC FOX Transmitters: 102-73181 KC0JFQ

162

Chapter 10

Commanding

The primary motivation for using the zNEO is to provide enough program memory and raw
speed to be able to easily implement the instrument timing methods and to provide a convenient
commanding interface to configure the FOX.
On the 102-73181 boards a single port is available to load sequence memory (FRAM) and audio
(FLASH) memory into the FOX. Commanding through the control port is identical to previous
units. The time network port has been eliminated.

Commands consist of a command keyword that is delimited by a comma or space. The delimiter
is restricted to these character to allow the system to differentiate between commands and files.
Filenames are delimited (or followed) by an equal (=) character.
The need for this requirement becomes evident when dealing with the TALK command where
the TALK keyword performs two different roles. One being the command to send an audio clip
(TALK filename) and the other being a directory entry (TALK= name, start, size, rate).

10.1 Command Status

The command completion status reports are somewhat formalized and intended to allow for host
controlled operation.

Remote host control makes little sense for fox hunts, but it does provide for a means of managing
the loading of command sequences and loading of InTel HEX files.

All traffic to the host system through the serial port is formatted as a report beginning with a
3-character key, a numeric index, and a reporting value. This is then delimited with an as-
terisk. Text after the asterisk is free-form and varies with the individual commands.
The numeric index is simply the index into the command dispatch table. Although the specific
numbers are nominally static, they can change when commands are added or removed.

For what-its-worth, the HELP command shows the index number associated with each com-
mand.

163

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.1.1 sts reports
Any message traffic that is generated by a command is prefixed by a sts key to indicate this is
status reporting traffic.

The HELP command, for example, reports on all the commands that appear in the command
dispatch table, each one starting with sts at the very beginning of the line.

Some commands only generate a single status message, in which case no sts message appears.

10.1.2 STS report
All commands generate at least one status report. The last status report that is generated has
the sts key converted to uppercase, so the key becomes STS.

This occurs to provide an indication to the host that the command has finished executing and
the status code appears in the reporting value field.

A negative value in the reporting value field indicates a problem was encountered when pro-
cessing the command.

The status report has appended to the end, an indication of the time the command required to
execute.

10.1.3 RDY report
The RDY00,00* report is used to indicate to the host that the system is ready to process the
next command. The numeric index and reporting value fields always occur as shown, they
are both set to ZERO.

This message is generated in one place in the code, so the format is somewhat static. The cur-
rent zNEO stack pointer, the space remaining on the stack, and the current system time all are
reported on this line.

The zNEO has a total RAM complement of 4096 bytes.

164

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2 Command List

Table 10.1: Command List 1
Mnemonic Class args Description
HELP SYS Help Menu and Items
HELP SYS string matching help items
ONCE SYS Sn= run sequence once
REM- SYS Remark,

(side-effect: stops schedules)
RUN0 SYS RUN ALL Schedules
RUN0 SYS name RUN Specific Schedule
STAR SYS time Allow schedules to run after specified

time
IDLE SYS STOP ALL Schedules
STAT SYS flag System Status, (I)ident scan
CONF SYS keywords Hardware Configuration
TOYC SYS res (250 2K 4K

NONE)
Hi chg rte DS1672 bat

TIME SYS time value Set Time (set DS1672)
D525 SYS ICS525 control ICS525 utility

System Control Commands.

Table 10.2: Command List 2

Mnemonic Class args Description
TIME SETUP Time from DS1672 to System

(NO Argument!)
EPOC SETUP hours Epoch offset (i.e. time zone)
CALL SETUP call FCC Assigned Callsign
NAME SETUP nick Local Nickname
NICK SETUP nick alias for "NAME", but don’t use it!

System Setup Commands.
Configuration parameters that identify the transmitter and get it in time lock with everyone else.

165

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 10.3: Command List 3

Mnemonic Class args Description
TONE PGM freq Audio Tone (in KHz)
CWPM PGM wpm gap1 gap2

gap3
CW Chipping Rate

FREQ PGM freq Frequency (in MHz)
FOFF PGM offset Frequency Offset (in KHz)
5351 PGM key value value

...
SI5351 setup group

BEGN PGM Key TX and Send Callsign (CW)
CODE PGM message Send Message (CW) up to 22 char
TALK PGM file-name Play Voiced Message (EDMP TALK)
WAIT PGM delay Wait for delay seconds
CHRP PGM tone per off dur

cnt
Send chirp train

DONE PGM (SILENT) Send Callsign (CW), SK (CW), and un-
key TX

BATC PGM key setpoint Transmit CW Battery Report
"A" analog read after transmitter enable,
"B" analog read before transmitter en-
able,
"E" encode using T and E
"V" battery voltage,
"I" battery current,
"R" 5V rail

BATV PGM key Transmit Vocal Battery Report
"A" analog read after transmitter enable,
"B" analog read before transmitter en-
able,
"V" battery voltage,
"I" battery current,
"R" 5V rail

BATR PGM flag Power Evaluation Battery Report
"I" battery coefficients

Sequence Commands.
These are the commands that appear in the operating sequences. These define the operating per-
sonality of this transmitter.

Table 10.4: Command List 4

Mnemonic Class args Description
MODS SCHED Sname period

offset
Modulus Schedule Set

MODC SCHED Sname= Modulus Schedule Clear

Scheduling Commands.
These command load the operating schedule into memory from FRAM using the INI= file.

166

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 10.5: Command List 5

Mnemonic Class args Description
TALK DIRECTORY esav TALK=

name,Strt,Len,rate
Waveform Directory Entry
(appears in FRAM as the TALK=
file)

Speech Control.
On the 102-73181 boards there is a second memory device that holds waveform data. This
pseudo-command is used to store directory information in the FRAM device to allow access to
the waveforms stored in the FLASH device.

Table 10.6: Command List 6

Mnemonic Class args Description
ESAV FRAM NAM=text Save named record in next free lo-

cation
EDMP FRAM "match string" Dump active records
EDID FRAM JEDEC-ID table dump

(PROG & WAVE)
ERAS FRAM number Rewrite record to MT**
EZER FRAM number or "DEV" Erase record to ZERO
ETAB Diag Dump the FRAM/FLASH device

table

FRAM Control Commands.
These commands are used to access and manage the FRAM device.

Table 10.7: Command List 7

Mnemonic Class args Description
HERA FLASH size start

DEV
Hex erase (WAVE device)
DEV performs device erase

HDMP FLASH length hex-start * Hex dump (WAVE device)
H56K FLASH b change bit rate to 57,600 b/S

(V3.68-,V4.0+)
H115 FLASH b change bit rate to 115,S00 b/S

(V3.69+)
:hex FLASH-

HEX
:llaaaattddddddddcc InTel HEX loader (WAVE device)

FLASH Control Commands.
These commands are used to load waveforms into the FLASH device.

167

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 10.8: Command List 8

Mnemonic Class args Description
BATR TEST Battery state text report
TEST TEST Hardware Test Subsystem
HALT TEST Halt Processor
STOP TEST Stop Processor
REST TEST Reset System
TEST TEST Hardware Test Subsystem

zNEO Control Commands.
These commands are used diagnose the operation of the zNEO processor.

10.2.1 HELP

Table 10.9: Help Subsystem
Command sample Description
HELP string Display commands that match string
HELP Display full list of commands

Action:
Display the list of available commands.

Help text is returned to the serial port.
Providing an argument will perform a substring match such that only the text that
matches the provided string is displayed.

Arguments:
Match string.

Returns:
STSxx,xx* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

168

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.2 ONCE

Table 10.10: Run a sequence ONCE
Command sample Description
ONCE Sn= Run sequence n one time

Action:
Run the specified sequence one time.

Arguments:
Sequence Name Sn=.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Note that the full filename of the sequence must be given in the command or the lookup
will fail (i.e. ONCE S0= or ONCE S1=).

This command is provided to allow the execution time of a sequence to be measured. The
final status report (sts00,11* Execution Time: nn.nn0) may be used as the message execu-
tion time as it is measured from when the ONCE command is recognized to where control
is returned to the ONCE command manager.

169

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.3 REM-

Table 10.11: Remark
Command sample Description
REM- Remark (no operation)
INI=REM- Remark (no operation)
S0=REM- Remark (no operation)

Action:
This is not acted upon.

May be used to embed remarks or comments in the FRAM.

Keep in mind that the file system, such as it is, uses the text to the left of the equal sign
as a filename. Scaning for a file is a simple string match that matches anywhere in the
line. As such, the REM- command should never appear before the equal sign. Placing
the REM- command incorrectly effectively neutralizes its effect.

Arguments:
None.

Returns:
STSxx,xx* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

10.2.4 RUN0

Table 10.12: Scheduling Control
Command sample Description
RUN0 schedule run selected schedule

Action:
Resumes running the schedule. Any traffic on the console will cause the schedule to stop.
This command allows resumption of processing.

Arguments:
Schedule Name: S0= ... S9=

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

170

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.5 STAR

Table 10.13: Start Scheduling
Command sample Description
STAR start time run selected schedule after specified time

Action:
Suspends scheduling until the indicated start time.
In other words, active mod schedules will only start running after the specified time.

Take note that this does not affect startup files (i.e. INI=, TEST=, MAS=, and
ANN=). These all run outside the scheduling loop leaving them unaffected.

Arguments:
Starting Time: HH :MM :SS.

Time spec must be complete (hours, minutes, and seconds)!

The stored time is one second before that given on the command line.
This enables scheduling just before the specified time so we don’t miss the first scheduling
event.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This command allows the unit to remain quiet, emitting no RF, until the hunt actually
begins.
The schedule scan is suppressed while the specified time is less that the system time.
The test is performed against the internal system time, in terms of ZULU time. The
time is truncated to a single day (i.e. 86400 seconds) for the comparison, so there is no
point in giving time beyond the normal 24 hour day.
If the EPOC command, if it is used, should occur prior to this command so that the
local time zone is taken into account.

171

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.6 IDLE

Table 10.14: Idle
Command sample Description
IDLE Stops all schedules

Action:
Clears the run flag for all schedules.

Arguments:
None.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

10.2.7 STAT

Table 10.15: System Status
Command sample Description
STAT System Status with module compile times
STAT I System Status with module compile times

Action:
Displays current system status.

Arguments:
"I" to list the compile dates for all the modules that make up the Fox Transmitter software
suite.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

10.2.8 CONF

Table 10.16: Hardware Configuration
Command sample Description
CONF Configure Hardware Subsystems

The STAT command also shows the configuration flags.

172

ICARC FOX Transmitters: 102-73181 KC0JFQ

Action:
Sets the hardware configuration bits.

Arguments:
Keyword(s).

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Use the CONF command with no arguments to dump the keywords available to this
command.

173

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 10.17: Hardware Configuration Flags

Command flags Description
ICS525 Select ICS525 synthesizer
ICS307 Select ICS307 synthesizer
SI5351 Select SI5351 clock synthesizer
SA818 Select SA818 transmitter
DRA818 Select DRA818 transmitter
EXTERN Select external transceiver
XTAL Document RF synthesizer crystal
CTL DRA818/SA818 Power Down Enable
PTT Carrier Enable (external transceiver)
TX_ENA Transmit enable
DB_PWR Daughterboard Power Switch
AM AM Mode
CW CW Mode
FM FM Mode
TONE Square Wave Tone Gen enable
PWMH0 Audio Generator Enable
AUDIO Audio waveform device select
ICS_PD ICS chip power down (ICS525/ICS307)
VCMO VCMO Enable (102-73161)
5MON ANALOG: Enable 5 volt monitor
SWIT ANALOG: Enable ext switch monitor
PHOTO ANALOG: Enable ext photo monitor
IMON ANALOG: Enable batt current monitor
VMON ANALOG: Enable batt voltage monitor
I2COFF Suppress I2C traffic
CWTIM Emit CW timing report
SCHED Scheduler diagnostics
DEBUG Enable diagnostics
2MA SI5351 clk drive 2mA
4MA SI5351 clk drive 4mA
6MA SI5351 clk drive 6mA
8MA SI5351 clk drive 8mA
6PF SI5351 reference Xtal load 6pF
8PF SI5351 reference Xtal load 8pF
10PF SI5351 reference Xtal load 10pF
CLK0 SI5351 enable CLK0, direct
CLK1 SI5351 enable CLK1, buffered
CLK2 SI5351 enable CLK2, LVDS
CLEAR Clear configuration flags
BMON Select the battery voltage monitor voltage divider
VOICE Select the memory device for audio storage
T0= ... T5= Set timing slots for message transmission

174

ICARC FOX Transmitters: 102-73181 KC0JFQ

The 102-73161-7 hardware and the 102-73161-12 hardware are deprecated. This soft-
ware will not operate correctly with these hardware revisions.
The 102-73161-25 hardware maintains the control lines at the same polarity as the 102-
73181 revisions, so the ICS525 flag allows the ICS525 to be loaded.
The 102-73181-0 hardware makes use of the ICS307 flag to configure for this synthe-
sizer. None of these boards were built and the software has not been tested to work
with this hardware revision.

The 102-73181-5 and 102-73181-10 hardware operate identically as far as the zNEO is
concerned. Either of these hardware revisions are selected using the SI5351, SA818, of
DRA818 flags.

ICS525

SubCommands
RF Synthesizer select.
For the 102-73161-25 boards, set the configuration flags to operate with the ICS525 device.
This sub-command selects default T0..T5 timing parameters. This will overwrite any previous
selection, so place changes to the T0..T5 timing parameters after this sub-command.

ICS307

SubCommands
RF Synthesizer select.
Not implemented (only on the 102-73181-0 board).

SI5351

SubCommands
RF Synthesizer select.
For the 102-73181-5 and later boards, set the configuration flags to operate with the SI5351
device.
Additional selection for the clock output drive and clock select are necessary. The reference
crystal load capacitance may also be adjusted should the need arise.
This sub-command selects default T0..T5 timing parameters. This will overwrite any previous
selection, so place changes to the T0..T5 timing parameters after this sub-command.

DRA818/SA818

SubCommands
RF Synthesizer select.
For the 102-73181-5 and later boards, set the configuration flags to operate with the SA818
and DRA818 transceiver module.
Currently the SA818 and DRA818 are treated identically.
This sub-command selects default T0..T5 timing parameters. This will overwrite any previous
selection, so place changes to the T0..T5 timing parameters after this sub-command.

175

ICARC FOX Transmitters: 102-73181 KC0JFQ

EXTERN

SubCommands
RF Synthesizer select.
For all boards, set the configuration flags to operate with an external transceiver.
Although earlier revisions had the external transceiver connection, these early revisions do not
implement serial control correctly so that capability is non-functional. Serial control of the
handie-talkie requires 102-73181-10 or later circuit board.
This sub-command selects default T0..T5 timing parameters. This will overwrite any previous
selection, so place changes to the T0..T5 timing parameters after this sub-command.

Control of the handie-talkie, other than simple PTT and audio will require updates to the
operating software. This would tend to imply that a specific handie-talkie would be used with
all stations.

XTAL

SubCommands
Document the RF Synthesizer crystal frequency.
This defualts to 20.0MHz, the same crystal frequency as used by the zNEO.

This only documents the alternate frequency, the crystal frequency isn’t used by the zNEO
software.

nMA

SubCommands
SI5351 clock output drive.
This is a selection command, only one of the SI5351 clock drive values is active.

The nMA sub-command and CLKn sub-command may be combined:
esav INI=8MA,CLK0

The CONF SI5351 comand provides a default setting for this value. Changes must be pro-
vided following the CONF SI5351 comand.

nPF

SubCommands
SI5351 reference clock crystal load capacitance.
The SI5351 has a programmable load on the reference crystal that can be adjusted with these
configuration controls. A default of 6pF is selected by the CONF SI5351 command.

The nPF, nMA and CLKn sub-command may be combined:
esav INI=8MA,CLK0,8PF

The CONF SI5351 comand provides a default setting for this value. Changes must be pro-
vided following the CONF SI5351 comand.

176

ICARC FOX Transmitters: 102-73181 KC0JFQ

Changing from the default of 6PF to 8PF will lower the carrier frequency by 4KHz to 5KHz.
Changing from the default of 6PF to 10PF will lower the carrier frequency by 8KHz to
10KHz.

CLKn

SubCommands
SI5351 clock output select.
This is a selection command, the software only allows one clock output to be active.
Although the hardware can drive all output at once, the software only enables one of the three
clocks. Take note that the output clock selection must match the hardware configuration.
For example:
When using the LVDS amplifiers, 102-73161-29 or 102-73181-35, the CLK2 output must be
selected or the LVDS driver on the main board will not receive a clock.
The CONF SI5351 comand provides a default setting for this value. Changes must be pro-
vided following the CONF SI5351 comand.

CLEAR

SubCommand
This sub-command clears all the configuration bits to zero. This does not affect the SI5351
configuration fields that control the SI5351 clock drive nor does it affect the SI5351 output
clock channel select.

BMON

SubCommand
This sub-command informs the software of the resistor values used in the battery voltage di-
vider.

Figure 10.1: BMON values (keyword in RED)

The keywords in the MAXV column are used to indicate to the software the specific resistor
divider value (for R35) present on the circuit board.
The default configuration uses a 15.0K resistor for R35 which is intended for a 6-cell AAA
battery pack. Using the AAA cell holder and housing indicated in the drawings, the battery
pack fits.
If a larger pack is used, R35 can be swapped out for the indicated values to accommodate a
higher capacity pack or a higher input voltage.

177

ICARC FOX Transmitters: 102-73181 KC0JFQ

VOICE

SubCommand
Selects either the FRAM device (U3) or the FLASH device (U12) for storing audio data.

DB_PWR

SubCommand
Currently, this command affects how the CHRP command controls the DB_PWR control
net. When the flag is set, the CHRP command will switch the DB_PWR net off when there
is no audio tone, effectively interrupting the carrier between chirps.
This flag need not be set with the 102-73181-28 RF amplifier as the TX_ENA net switchs
carrier on and off on the 102-73181-28 board.

AM and CW

SubCommand
AM is an alias for CW.
Use the form: -AM to return to normal FM operation.
This flag requires the use of the 102-73181-36 power amp board.
This flag tells the CW generator (i.e. the CW interrupt service routine) to toggle the
TX_ENA net along with the TONE_ENABLE net. This causes the transmitter to op-
erate in an AM mode, where carrier esacapes only during the dit and the dah. This is essen-
tially operating as an HF code transmitter.
You can make use the TONE 0 command to disable FM modulation.
This type of operation is intended primarily for a code-only style of operation. The use of
TALK commands works, with the carrier being enabled prior to each audio fragment. The
audio will be choppy as the carrier is disabled following each audio fragment.

FM
SubCommand Added in the 3.94 software release

FM is an alias for -AM.
Use this to return to normal FM operation.

No help text appears when issuing the CONF command with no arguments.

178

ICARC FOX Transmitters: 102-73181 KC0JFQ

T0=nn

Timing SubCommand; RF subsystem power enable
Sets (or resets) the time for the message transmission T0 slot.
See figure 4.15 on page 42.
This delay is in the radio_control.c module.
The DB_PWR signal is asserted to turn on U81 and U91 to apply power to the RF daughter
board.
The DRA818/SA818 require some time to collect its thoughts before any command traffic will
be processed.
This also has a minor effect on the 102-73181-28 module. This module has and additional
switch to control power to the RF amplifier although the default setting of 10 is more than
adequate.

T1=nn

Timing SubCommand; RF subsystem powerup
Sets (or resets) the time for the message transmission T1 slot.
See figure 4.15 on page 42.
This delay is in the cmd_message.c module.
The CTL signal is asserted in this state (this appears as PD’ on the SA818/DRSA818
daughter board).
It occurs right after the T0 delay has occurred.

The DRA818/SA818 require some time to recover from a power-down state before any
command traffic will be processed. The standard timing value for this RF module is 1500
mSec and it may need to be extended for some instances of the module.
Do keep in mind that this delay directly moves when the RF section starts producing car-
rier. If there is a mix of RF modules, this delay must be accounted for; with the easiest
approach being to use the same T1 delay throughout the group.
Using matching timing parameters within a transmitter group will, in effect, shift all mes-
sages within the group of fox transmitters by the same time. This will be most evident
when a mix of DRA818/SA818 RF modules, and SI5351 RF clock synthesizer are used.
Although the SI5351 does not require the long delay that is needed by the DRA818/SA818
RF modules, the long delay will not interfere with SI5351 operation.

This timing delay may also be increased if the first dit of the signon message (from the
BEGN command) is not heard.
A new value of 150 seems to help:

esav INI=CONF,T1=150

179

ICARC FOX Transmitters: 102-73181 KC0JFQ

T2=nn

Timing SubCommand; RF enable
Sets (or resets) the time for the message transmission T2 slot.
See figure 4.15 on page 42.
This delay is in the cmd_message.c module.
The TX_ENA signal is asserted in this state (this appears as PTT* on the DRA818/SA818
daughter board).
This delay occurs immediately after RF appears on the antenna connector.
The default value for this delay was increased in the V3.64 software release to give the RF
subsystem time to stabilize before the first chip (the letter E) of the signon message is sent.

T3

Message Delivery
See figure 4.15 on page 42.
There is no timing delay associated with this timing state.
This is the state where our message is sent.
Time spent in this state is determined by the message content and the code generator settings
(i.e. see CPWM command).

T4=nn

Timing SubCommand; RF disable
Sets (or resets) the time for the message transmission T4 slot.
See figure 4.15 on page 42.
This delay is in the cmd_message.c module.
The TX_ENA signal is deasseerted in this state.
This is a (typically) short delay after the last of the outgoing message has been sent. Al-
though the output channel is not pipelined, and we could simply disable RF after the last
message event, this delay is provided to enforce some quiet time after the last message audio
is sent.
This simply provides us a means of avoiding a garbled ending to our message.

T5=nn

Timing SubCommand; RF teardown
Sets (or resets) the time for the message transmission T5 slot.
See figure 4.15 on page 42.
This delay is in the cmd_message.c module.
The CTL and DB_PWR signals are deasserted in this state.
This delay occurs prior to steps taken to bring the RF subsystem into a low-power state.

180

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.9 TOYC

Table 10.18: TOY Clock Charge
Command sample Description
TOYC DS1672 setup report
TOYC <keyword> reconfigures the DS1672

Action:
With an argument, sets up the DS1672 charge control in the same manner as the older
TOYE command did.
With no argument, reports on the DS1672 current settings.

Control register patterns are inspected and the write is suppressed if the control bits are
not as expected. This checking is to avoid writing an incorrect time into the 32 bit time
counter.

Arguments:
Charge rate:

250 enable the 250Ω charging resistor
2K enable the 2KΩ charging resistor
4K enable the 4KΩ charging resistor
NONE disable charging circuit

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The 102-73181-5 boards added a circuit to supply current to the DS1672 from the main
battery to maintain the clock battery. For these revisions the appropriate argument to
this command is "NONE"

10.2.10 TIME

Table 10.19: Time management command
Command sample Description
TIME unix-time load time field into DS1672
TIME load system time from DS1672

Action:
Set the system time and TOY clock time.

Arguments:
Time String.
None (to set system time).

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

181

ICARC FOX Transmitters: 102-73181 KC0JFQ

With no argument, the DS1672 is read and its contents are written to the system time
field.
The TOY clock is polled until the seconds field changes before updating the system
time to achieve a bit better timing resolution.
We assume the clock setting utility synchronizes with the host system to achieve good
sub-second synchronization.

If a time string is present in the command, it is converted to binary and copied to the
system time field and the DS1672 time registers are updated.
The RTI (ie.. sub-seconds) are set to zero.

The TOY clock seems to take a bit of time to come to life (or other issues that affect
startup). To get a reliable time read at startup, issue the TIME command twice with
an intervening delay. More discussion and an example may be found in section 4.8.2 on
page 52).

TOY is an acronym for TIME of YEAR.
The DS1672 is a 32 bit counter that is incremented every second.
The system time is kept as a 32 bit integer, again being incremented once per second.

10.2.11 TIRP

Table 10.20: Time reporting command
Command sample Description
TIRP synchronize, beep, and verbalize seconds
TIRP <n> repeat count
TIRP A N S verbalization enables

Action:
Verbalize a time synchronizatiuon message.

Synchronize to zero RTI at seconds(0..59) mod 5.
Send a beep at the currently selected audio tone (the beep occurs at the start of the sec-
ond).
Verbalize the current seconds (that run 0 to 59).

Arguments:
Numeric Repeat Count.
A enables sending the V_TIRP audio clip when the TIRP command starts running.
N enables verbalizing the 2 digits of the seconds field.
S enables verbalizing the V_SEC audio clip.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

182

ICARC FOX Transmitters: 102-73181 KC0JFQ

This command is intended to be placed into the ANN= message to provide a synchro-
nization check of the TOY clock as the fox transmitters are turned on and placed at the
begining of a hunt.
It is not intended as a general command to be used inside of a normal message. The
delay before the beep may be up to 5 seconds as the fox transmitter waits for a schedul-
ing point to occur.
You may choose to turn transmitters on, one-at-a-time prior to walking out in the
field to check that the TOY clock is working as expected and we aren’t low on battery
power.
The V_TIRP audio clip announces that a time synch operatio is about to be per-
formed. A heads up if you will.
The V_SEC audio clip we expect to say "seconds".

10.2.12 D525

Table 10.21: ICS525 management command
Command sample Description
D525 Dumps the ICS525 Divisors

Action:
ICS525 setup diagnostic.

Arguments:
None.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Right now, no arguments are expected.

This command will expand to deal with ICS525 management.

Note the status report that is delivered when the ICS525 handler is not loaded:

STS13,01* Handler_D525 (cmd_ics525_dummy.c*) 0.03 Sec

183

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.13 EPOC

Table 10.22: Time management command 3
Command sample Description
EPOC argument

Action:
Set the timezone offset (to display in terms of local time).

Arguments:
Offset in hours.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The TOY clock is expected to be loaded with UT or truncated UT.
The time display routine shows only hours minutes and seconds.
This offset is added to the current system time in the time display routine to shift the
displayed time to local time.
Here in the central time zone, the argument is -5.0 in the summer and -6.0 in the win-
ter.

In the example sequence, we set the timezone offset, which you may think of as the lo-
cal day epoch, prior to loading time from the TOY clock. The time displayed on the
debug console will then be expressed in local time.

Note: truncated UT would be:
system_time = Unix_Time % 86400;
system_time += 86400;

–or–
system_time = Unix_Time % 864000;
system_time += 86400;

The shifting by one day keeps the EPOCh offset from causing the resulting time to go
negative.

By way of example, the command for operating with Central Daylight Time is EPOC
-5.0.

184

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.14 CALL

Table 10.23: Setup Callsign
Command sample Description
CALL callsign FCC assigned callsign

Action:
The supplied text is saved in the callsign variable.
This callsign is sent at the end of every message.

Arguments:
Callsign.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This provides a single instance of the callsign.
This callsign may be substituted, as in CODE <CALL> or TALK <CALL>

10.2.15 NAME & NICK

Table 10.24: Setup Nickname
Command sample Description
NAME name tactical callsign
NICK name tactical callsign

Action:
The supplied text is saved in the name/nickname variable.

Arguments:
Nickname.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This provides a local alias for the transmitter.
This nickname may be substituted, as in CODE <NAME> or TALK <NAME>

185

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.16 TONE

Table 10.25: CW Tone Control
Command sample Description
TONE Hz Audio tone frequency select
TONE 0.0 Disable audio tone

Action:
Sets the audio tone frequency.
The frequency selection is constrained to be between 250Hz and 2.5KHz.
The tone generator can be disabled by calling out a frequency of 0.0.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The specified frequency, in KHZ is approximate.

186

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.17 CWPM

Table 10.26: CW chipping rate control
Command sample Description
CWPM wpm Set the basic CW delivery rate
CWPM wpm bit char word sentence Set all of the code generation parame-

ters

Action:
This command sets the code generation timing parameters.

Arguments:
Chipping parameters from the table:

Table 10.27: Chipping Parameters
Num Argument units Description
1 WPM words/minute Basic code delivery rate
2 inter-bit chips Nominal Value 1
4 inter-character chips Nominal Value 3
3 inter-word chips Nominal Value 5
5 inter-sentence chips Nominal Value 7

There are two special cases that may be specified with this command.
The chipping rate may be increased by 1 WPM using "++" as the only argument.
Conversely using "–" will decrease the chipping rate by 1 WPM.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The chip referred to above is the time allocated to a dit in the code message. A dah is
allocated 3 dit times.

In addition to the basic chipping rate (expressed in terms of WPM), the spacing be-
tween tones may be adjusted as needed using the 2nd. through 5th. fields.
Use a value of 0 to leave parameters unchanged and a value of -1 to set the field to the
nominal or default value.

The STAT command will display the current settings.

187

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.18 FREQ

Table 10.28: Transmit carrier frequency control
Command sample Description
FREQ freq Operating Frequency

Action:
Save the Transmitter Operating Frequency.
This new frequency selection will then be loaded into the RF subsystem when the BEGN
command is executed.

The frequency selection is not immediate to avoid causing operational problems!
Were the frequency selection to take effect immediuately, such as when actively trans-
mitting, you would lose contact with the fox transmittER.

Arguments:
Frequency, in MHz.

The action performed depends on the transmit element selected in the CONF com-
mand.
The FREQ command can make use of supplemental frequency tables stored in the
FRAM. See section 9.15 on page 158 for details of encoding the supplemental frequency
table.

DRA818/SA818

Transceiver Module
The frequency string is saved for later use.

When the BEGN command configures the transceiver, the frequency string is sent to the RF
module to set the frequency.

The only sanity check is to check that the requested frequency is within bandplan allocations.

SI5351

Clock Synthesizer
The frequency string is saved for later use and used to search the internal frequency table for a
matching frequency.

Assuming you have entered a valid frequency, the SI5351 setup patterns are extracted and saved
for use when the BEGN command configures the SI5351 (typically from a table that was loaded
into FRAM).

The result of the lookup are visible in the STAT command reports and a failed lookup is re-
ported in the stsxx,xx* report.

188

ICARC FOX Transmitters: 102-73181 KC0JFQ

ICS525

Clock Synthesizer
The frequency string is saved for later use and used to search the internal frequency table for a
matching frequency.

Assuming you have entered a valid frequency, the ICS525 setup patterns are extracted and saved
for use when the BEGN command configures the ICS525.

The result of the lookup are visible in the STAT command reports and a failed lookup is re-
ported in the stsxx,xx* report.

EXTERN

External Handie Talkie
The frequency string will need to be massaged into the appropriate setup commands for the
handie-talkie in use. The V3.70 software does not handle any handie-talkie.

Frequency Limiting

The FREQ handler does very minimal limits checking to try to keep frerquency selec-
tion sane. All operating frequencies have been migrated to external tables, so effect any
required limits by loading tables with valid entries.

10.2.19 FOFF

Table 10.29: Transmit carrier frequency offset
Command sample Description
FOFF freq Frequency Offset

Action:
Save the Transmitter Frequency Offset.

Arguments:
Offset, in KHz.

This command simply documents the offset frequency we are operating with at the moment.
It does not affect operation of the frequency synthesizer!
The fox_simple program generates a command for the INI sequence. It appears as
INI=FOFF,<offset> and indicates the offset used to generate the external frequency table.
After we measure the actual operating frequency of the synthesizer we generate an external
frequency table to operate at the target frequency and note the applied offset with this com-
mand.

189

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.20 5351

Table 10.30: SI5351 Control
Command sample Description
5351 register key and parameters

Action:
SI5351 diagnostic command.
This command is used when developing setup tables for the SI5351. We also use this com-
mand to inspect the internal 5351 tables.

Arguments:
Keyword and hexadecimal parameters

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Table 10.31: SI5351 Register Parameters

key Arguments Description
HELP This help file
DUMP Dump SI5351 Registers
SDUMP Dump ALL SI5351 Registers
TABLE Dump SI5351 Setup Tables
RESET Reset SI5351
LOAD Load SI5351 Registers
TEST <P1>,<P2>,<P3> Test 5351 divisor values
CAP Set Xtal load capacitors (6PF, 8PF,

10PF)
XTALT Connect XTAL oscillator to CLK0 pin
I2CT Test I2C transactions to SI5351
I2CR Test I2C Read transactions to SI5351
I2CW Test I2C Write transactions to SI5351
FREQ <f>,<d>,<o> Save Frequency, Divisor and Offset
PLLS <P1>,<P2> Save MSNx register values

(P3=PLL3_DEFAULT)
PLLS <P1>,<P2>,<P3> Save MSNx register values
MS <P1>,<P2>,<P3> Save MS register values

HELP

Help Text
Dumps the help text through the serial channel.

190

ICARC FOX Transmitters: 102-73181 KC0JFQ

DUMP

Register Dump
Dump the SI5351 registers through the serial channel.

SDUMP

Full Register Dump
Dumps the entire 256 byte address space of the SI5351 through the serial channel.

TABLE

Frequency Table Dump
Dumps the internal frequency table for the SI5351 through the serial channel.

Around V3.76 the internal table had the crystal frequency offset removed. This implies that the
internal frequency table will not operate the SI5351 at the correct frequency. For proper opera-
tion you must characterize the offset error and load an external table to correct for the error.

Around V3.80 the internal frequency table is loaded with a small number of points spread across
the 2M band to allow you to measure the error at a point that is useful for your fox hunt.

RESET

SI5351 PLL Reset
This is supposed to assert the reset bits in the SI5351 that reset the two internal SI5351 PLLs.
V3.56 doesn’t get it right!

LOAD

Loads the SI5351 register.
Loads the SI5351 with the stored patterns.

Used to test a configuration that has been set using the FREQ, PLLS, and MS sub-commands.

TEST

Test SI5351 MSNA divisor values.
Picks up the MSNA/MSNB divisor values from the command line, loads the SI5351 registers (all
of them), and starts sending a CW "HI HI" message until a keyboard character arrives.

Used to quickly test the MSNx divisor values.

The transmitter (i.e. the RF generator) is shut down when a keystroke comes in.

CAP

Load Capacitor
Set the SI5351 crystal oscillator load capacitors.

Loaded into the SI5351 when the LOAD sub-command occurs or when the BEGN occurs.

191

ICARC FOX Transmitters: 102-73181 KC0JFQ

XTALT

Diagnostic
For diagnostics, the crystal oscillator output is connected to the CLK0 output pin.

I2CT

I2C transaction test
Generates continuous I2C transactions addressed to the SI5351.
The SI5351 must respond to I2C transactions with an acknowledge!

I2CR

I2C transaction test
Generates continuous I2C read transactions addressed to the SI5351.

I2CW

I2C transaction test
Generates continuous I2C write transactions addressed to the SI5351.

FREQ

Frequency Table Load
Saves the parameters to RAM for later use.

These strings are, in effect, simply documentation fit for human consumption. They contents are
not used to load the SI5351.

PLLS

Multisynth 1 parameters
These are the P1, P2, and P3 register values.

MS

Multisynth 2 parameters
These are the P1, P2, and P3 register values.

192

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.21 BEGN

Table 10.32: Begin Message Traffic
Command sample Description
BEGN
BEGN SILENT Suppress ID
BEGN SILENT tone Suppress ID and send audio

Action:
Begins message transmission.

Arguments:
SILENT modifier.

This modifier suppresses the code ID that is sent as part of the BEGN sequence.
This in a non-FOX related modifier, not to be used when transmitting over the air.
This modifier should result in an unmodulated carrier. The bandwidth here repre-
senting the reference clock noise (i.e. short term crystal stability).

SILENT tone modifier.
This modifier suppresses the code ID that is sent as part of the BEGN sequence
and enables the tone generator at the specified frequency (in KHz). This in a test-
ing modifier intended to aid in analyzing the performance of the output filter on the
motherboard.
This modifier should result in the carrier being spread, the bandwidth representing
the carrier modulation.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Enables the RF section.
When configured for an external device, the on-board RF sections would be left dis-
abled.

Once the RF subsystem is active, the system send CQ CQ CQ and the stored callsign
(see the CALL command in section 10.2.14 on page 185).

The current system clock is saved for use by the DONE command.

193

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.22 CODE

Table 10.33: Generate Morse Code
Command sample Description
CODE text

Action:
Sends a CW message.

Arguments:
Message text.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The message text is sent at the specified word rate (see the CWPM command).
Multiple messages may be sent, one after other, to overcome the limited size of each
record in the FRAM.
The chipping rate may also be altered at any time. That is to say that CODE com-
mands and CWPM commands may be freely intermingled.
As of version 4.08 the CODE <CALL> and CODE <NAME> perform as expected.

10.2.23 TALK

Table 10.34: Generate Audio
Command sample Description
TALK clip-name

Action:
Send a voice message

Arguments:
File Name.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Voice waveform data, stored in the FLASH, is used to load a PWM channel in the
zNEO to generate a PWM signal to the RF subsystem.

194

ICARC FOX Transmitters: 102-73181 KC0JFQ

The sample rate is set by the RIFF/WAV header in the audio file. If this is a simple
waveform file with no header, TALK directory entry will have the sampling rate and
sample count. The the sample size is fixed at 8 bit unsigned.

Aliasing: Aliasing is allowed in the TALK command to allow callsign and nickname
substitution. The audio file name must match the stored callsign or nickname as the
lookup is a simple text substitution.
Waveform data is stored in the FLASH rather than in the FRAM assuming that the
waveform data will not change frequently. The FLASH device is also much larger than
the FRAM device and considerably cheaper.
The TALK= directory entry has the starting location in FLASH memory. As men-
tioned previously, a raw wavefoprm clip may have the sample rate and sample count ex-
plicitly sotred in the directory entry. Sample rates of 4K/sec, 5K/sec, 8K/sec, 10K/sec
and 16K/sec are implemented.

10.2.24 WAIT

Table 10.35: Simple Wait
Command sample Description
WAIT n.n Wait specified time (in decimal seconds)
WAIT p/o Synchronous Wait (period/offset in seconds)
WAIT SWITCH x Wait for switch input state
WAIT PHOTO Wait for Photocell input change

Action:
Waits for specified time.
Waits for synchronization time.
Waits for switch state.
Waits for photocell change.

Arguments:
Time in seconds (decimal).

Scheduling point in period/offset notation.

Wait for external event trigger.
Contact closure (for SWITCH).
Change in analog channel (for PHOTO).

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This is a simple delay. Time specified in decimal seconds. Time specification must be between
1/10th. and 60 seconds.

195

ICARC FOX Transmitters: 102-73181 KC0JFQ

V3.80 add a synchronous wait feature.
This is an immediate synchronization with the schedule specified in the argument. The slash (/)
delimiter was just something that is convenient. No whitespace between the period and offset
values.
When combined with the CONF CW configuration command, you can run transmitters within
a group in close synchronization with eachother (the CONF CW will cause carrier to drop dur-
ing the waiting period).

V3.53 adds the SWITCH modifier to check the status of front panel switch that is connected
through the J6 connector.
The PHOTO modifier is also part of this addition. This modifier keeps a running average of what
the photocell sees and releases when it changes.

10.2.25 CHRP

Table 10.36: Chirp Emulator
Command sample Description
CHRP tone per dur rep V3.73 and prior (do not use!)
CHRP tone per off dur rep V3.75 and later
CHRP file per off delay rep added in V3.84 and later

Action:
Chirping tracker emulation.

Arguments:
Audio file (same as in the TALK command).
Audio tone frequency (float KHz).
Chirp period (int seconds).
Chirp offset (int seconds).
Chirp duration (float seconds).
Repeat count (int).

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This command emulated a wildlife tracker that turns on RF for a short period every
few seconds. The carrier is removed between chirps.

The meaning of period matches its meaning in the scheduling command (i.e. seconds).
That is to say the chirp will occur every period seconds. The chirp tone duration is set
by the Chirp duration parameter (duration is fractional).

196

ICARC FOX Transmitters: 102-73181 KC0JFQ

An update starting at V3.75 changes the scheduling method to a synchronous model.
In this model, the period and offset granularity are one second, exactly like of main
scheduler.
Specify per and off just as with any other schedule.
The command halts the zNEO between chirps to reduce power (similar to the main
loop does).

Argument 1: frequency/filename

Audio tone frequency in Kilo-Hertz..
A value of 0.0 disables the modulation signal resulting in an unmodulated carrier being
sent.
The audio tone frequency here does not affect that set by the TONE command.

Version 3.84 adds the capability to send out an audio file in place of a simple tone. Any
audio fragment can be sent here, but it is intended to allow an actual chirp to be stored in
FLASH.

Argument 2: Period in seconds

Period (fractional seconds V3.73 and earlier).
Period (integer seconds V3.75 and later).
Specifies the repeat period of the "chirp". The chirp repeates every Argument 2 seconds.

Argument 3: Offset in seconds

Offset (integer seconds)
Specifies the offset (in seconds) into the repeat period.

Argument 3/4: Duration in seconds

Chirp duration (fractional seconds).
Specifies the time (in seconds) the chirp is sent. Carrier is active during this period.

Version 3.84 changes the meaning of this field when sending out an audio file. This field
specifies the settling or warm-up time after the RF section is enabled before the audio
starts streaming out.

Argument 4/5: count

Repeat count (integer).
The chirp is repeated this many times.
A negative value will cause a timetage to emit before each chirp.

197

ICARC FOX Transmitters: 102-73181 KC0JFQ

With the synchronous scheduling method, it becomes possible to setup a schedule where a
group is mixed at a much finer granularity (requires V3.76 or later).
Consider five transmitters operating with a 10 second chirp period. Just like we schedule mes-
sage traffic staggered through a 5 or 10 minute cycle, we can setup offsets of 0, 2, 4, 6 and 8
seconds to have the chirp group operate without overlapping.
You have to deal with the signon traffic that is required every 10 minutes, but the signon can
be abbreviated (using only the BEGN command) with all stations carefully aligned at the be-
gining of a 10 minute cycle.
The argument 5 counts will all be different to force the end of message traffic to align (i.e.
use DONE SILENT to suppress ending ID message when the BEGN message occurs imme-
diately).

The V3.84 version adds the ability to an audio file in place of a simple tone burst. The power
switching works the same, so when configured for interrupted carrier operation we still remove
carrier when not sending audio. Also note the duration field is redefined to avoid the need to
embed a quiet section at the begining of the audio file to allow the RF section to stabilize.

10.2.26 DONE

Table 10.37: Done with message traffic
Command sample Description
DONE
DONE SILENT Suppress ID

Action:
End of message traffic.

Arguments:
SILENT modifier.

This modifier suppresses the code ID that is sent as part of the DONE sequence.
This in a non-FOX related modifier, is should not be used when transmitting over
the air as you will not send the required station ID at the end of your message.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Done with message traffic.
The ending callsign message is sent and the RF subsystem is disabled.

The ending message consists of the station callsign (see the CALL command in section
10.2.14 on page 185) to satisfy FCC rules and a CW SK SK SK.

198

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.27 BATC

Table 10.38: Battery Report CODE
Command sample Description
BATC keys <modifier>,<key>,<V-limit>

Action:
Battery Report in code.

Arguments:
Modifier.
Channel Key.
Battery Voltage Limit.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Table 10.39: BATC Modifiers

Modifier Description
B A/D sample collected before BEGN
A A/D sample collected after BEGN
E Encode value using T/E

Table 10.40: BATC Keywords

Channel
Key

Description

V Battery Voltage and trip point
I Battery Current
R Regulated 5V rail

This command generates a CW battery report. The command should occur between
BEGN and DONE commands (or you won’t hear it). Although the battery status is
available through the STAT command, battery status isn’t visible when transmitting.

The modifier must be the first character after the BATC command and it is optional.
The A and B modifiers control when the A/D is sampled. If the modifier is omitted,
the sample data is taken when there is RF carrier present.

199

ICARC FOX Transmitters: 102-73181 KC0JFQ

The E modifier changes the encoding of the engineering value reported over the air.
When the E modifier is omitted, the voltage or current will be reported using numerics
(so you have to be able to hear CW to understand it). The report can also be encoded
where the first digit is a series of "T"s (i.e dahs) and the second digit is a series of "E"s
(i.e dits).

As with all CW generating commands, the CWPM command can be used around this
BATC command to adjust the speed to your liking.

The keywords, which occur after any modifier character, select the channel to report on.
Two voltages and one current may be reported.

Of primary interest is the battery condition, that is the voltage and current draw. The
voltage being of interest to know if the station can operate for the duration of a hunt
(or needs a battery change).
The V modifier is used to report voltage and it may include a voltage trip point. If the
measured voltage falls below the trip point, the code message that reports the voltage
will include SOS SOS to indicate we are in a critical battery state.

The current simply to see that the station is operating normally or if a fault condition
needs to be investigated. Since the primary regulator, for the 5 volt rail, is a switch-
mode device, the current is inversely proportional to the battery voltage.

Finally, the regulated 5V rail is just there, if you want to look at it. If it’s low, there
is a good chance the station is about to go quiet because the battery can’t support the
load. If the 5V rail is high, the 3.3V regulator is probably about to overheat.

The battery voltage limit is used to alter the battery voltage message. This field is ig-
nored for the other two channels.

This set the point where the battery voltage message change from BATC HI HI nn.n
to BATC SOS SOS nn.n to indicate that the battery voltage is getting too low and the
station may soon go off the air. Power plot may be found in section 4.10.2 on page 61.

Note on command timing:
The use of the E modifier makes the execution time of this command a bit unpre-
dictable. The number of T and E CW elements are voltage dependent.

200

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.28 BATV

Table 10.41: Battery Report VOICE
Command sample Description
BATV keys modifiers

Action:
Battery Report Voiced.

Arguments:
Keywords.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This has all the same modifiers and keywords used by the BATC command with the
exception of the E modifier. The E modifier is of no use when generating voice traffic
so it is ignored if present.

The battery voltage limit is ignored prior to V3.87. Starting at V3.87 we get an SOS in
code just like the BATC command is the battery voltage is below the specified limit.

10.2.29 BATR

Table 10.42: Battery Report Text
Command sample Description
BATR flag Battery Report

Action:
Battery Report (textual).

Arguments:
A flag character I for coefficients table dump.

Returns:
sts47,00* Handler_BATR (cmd_battery.c*) 7.5V 7.31445e-03 coefficients table line

STSnn,00* response with status and command execution time along with the battery state
report.
RDY00,0n* response with current stack pointer value and current system time.

This command generates a battery state report showing current voltage and current as
seen in the Fox Transmitter.
This is intended to be used to characterize battery capacity.

201

ICARC FOX Transmitters: 102-73181 KC0JFQ

You may find it useful to load the current UNIX time into the Fox Transmitter prior to
a battery performance run. This will result in the current time, rather than a truncated
time, to appear in the battery report.

10.2.30 MODS

Table 10.43: Scheduling control, MOD
Command sample Description
MODS n period offset load schedule

Action:
Sets a schedule.

Arguments:
Schedule.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Argument 1: Sn

Schedule number.
Runs from 0 through 9, allowing ten schedules to be present in the schedule.

Argument 2: period

Scheduling period, expressed in seconds or minutes and seconds.

Argument 3: offset

Scheduling offset, expressed in seconds or minutes and seconds.

The scheduling period may be expressed as seconds, should that be most convenient. To
specify period or offset in seconds, simply place the number of seconds in the command.
Fractional numbers should not be used as the scheduler granularity is limited to seconds.
If you find using minutes and seconds more convenient, encode them with a colon as a sep-
arator. The presence of the colon triggers the correct handling of the period to offset speci-
fication.

The scheduling period is synchronous with system time. That is to say the scheduling
period offset is the remainder when the system time is divided by the scheduling period.
A scheduling period of 5 minutes starts on the hour, and every five minutes thereafter.
Matching scheduling periods (in multiple stations) are all aligned.
The scheduling offset is the offset into the scheduling period where this particular
schedule begins operation. Each station in a group has the same scheduling period.
Each station in a group has a unique scheduling offset. The scheduling offsets differ by
the time allocated to each station.

202

ICARC FOX Transmitters: 102-73181 KC0JFQ

As an example a normal foxhunt with a 5 minute cycle would be scheduled like this:

Table 10.44: Typical Schedule
Unit Period Offset Notes
1 300 0 message time limited

to less than 60 sec-
onds.

2 300 60 60 seconds limit
3 300 120 60 seconds limit
4 300 180 60 seconds limit
5 300 240 60 seconds limit

10.2.31 MODC

Table 10.45: Schedule clear
Command sample Description
MODC Sn=

Action:
Clears a schedule.

Arguments:
Schedule Name (with the trailing equal sign)

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Argument 1: Sn=

Schedule number.

The schedule is expressed in the same manner as with the MODS command above.
This command allows all schedules to be stored and edited in one file. Individual se-
tups, where the callsign is set, can then clear all the other schedules.

203

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.32 TALK Filesystem directory commands

Table 10.46: TALK Filesystem directory
Command sample Description
esav TALK=name start length rate Name, start location, length, and rate
esav TALK=name start Name and start location

These pseudo-commands reside in the Configuration Command File System but are not
processed by the normal command processor. These command strings define the loca-
tion and length of the audio clips in the TALK Filesystem. The TALK command uses
these pseudo-commands to locate the audio waveform data in the FRAM.

When the audio clip is a properly formatted RIFF/WAVE file with a header, only the
start address in FLASH is needed. Additional information is extracted from the header.

Name

Audio File Name
This is a simple file name. Text processing when loading the directory forces the file-
name to be uppercase.

An underscore is allowed in the filename.
Although parameter substitution is performed for arguments to a TALK com-
mand, this is not allowed in these directory entries.
Filename length is not specifically limited, but all the information in the direc-
tory entry must fit into the 31 byte records size limit.

Start

Audio File start address This is the decimal starting address of the audio file.

A start address is always required. The RIFF/WAVE file header does not have any content
that could be used to perform a search.

Length

Audio File length This is the decimal length of the audio file. It is the number of 8 bit data sam-
ples that will be processed by the TALK command..

A properly formatted RIFF/WAVE file header eliminates the need to supply this parame-
ter.

204

ICARC FOX Transmitters: 102-73181 KC0JFQ

Rate

Audio File Sample Rate This field is a key to tell the TALK command the audio sample rate
of the file. The TALK command uses this field to set the SPI clock rate used to read from the
FLASH device. The SPI clock rate then dictates the update rate of the PWM control register.

A properly formatted RIFF/WAVE file header eliminates the need to supply this parame-
ter. This parameter is restricted to these same three rates.

There are currently 3 valid keys for this field. A key of "4K" set a sample rate of 4KHz. A
key of "5K" set a sample rate of 5KHz. A key of "8K" set a sample rate of 8KHz.

For over-the-air voice, a sample rate of 4K or 5K may be used. A sample rate of 8K will
cause the RF section to produce too much deviation and produce excessive bandwidth.

10.2.33 ESAV text

Table 10.47: FRAM control ESAV
Command sample Description
ESAV

Action:
Save a command into FRAM-volatile memory.

Arguments:
Command text.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Overflow:
Writing too many records to the FRAM will not cause overflow. The FRAM handler will
not write past the end of the physical FRAM present in the system, rather overflow data is
discarded.
The smallest FRAM device the software will deal with is 64Kb which is room for 256
records. This size device is marginally small for managing a large or complicated hunt.
Whatever commands overflow the FRAM are, of course, lost.

205

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.34 EDMP text

Table 10.48: FRAM control EDMP
Command sample Description
EDMP
EDMP key Entries that have key

Action:
Dump FRAM-volatile memory records.

Arguments:
Search Key.

Returns:
sts01,nn* records with active FRAM records.
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Scanning of the FRAM records stops when an empty record is encountered.

The EZER command makes subsequent records invisible!

10.2.35 EDID

Table 10.49: FRAM control EDID
Command sample Description
EDID

Action:
Dump FRAM/FLASH JEDEC ID.

Arguments:
None.

Returns:
sts01,nn* records for the FRAM device.
sts01,nn* records for the FLASH device.
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

206

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.36 ERAS

Table 10.50: FRAM control ERAS
Command sample Description
ERAS n remove record (i.e. REM-)
ERAS start stop remove multiple records
ERAS DEV erase device

Action:
Remove the FRAM record by inserting a MT** command in place of the existing com-
mand.
Remove multiple records by specifying a range of records.

Arguments:
Record Number or keyword

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Numeric

Record Number

Specifying the record number (or range of numbers) rewrites the specified record(s) with a
MT** command.
This leaves the remainder of the FRAM file system visible.

DEV

Entire Device

Erase the entire FRAM device.

Using fox_binary to avoid using the HERA command.
There is no need to erase the FRAM when using the HERA command as the fox_binary
loader completely bypasses the (somewhat primitive) file system. The fox_binary loader
will place a zero record following the last command that is loaded to properly mark the
end of active records.
This behaviour will be particularly useful if you have audio clips loaded into the FRAM
on older boards that do not have a seperate FLASH for storing waveform data. The
fox_binary utility leaves that waveform data undisturbed.

207

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.37 EZER

Table 10.51: FRAM control EZER
Command sample Description
EZER n erase record (ZERO)
EZER start stop erase multiple records (ZERO)

Action:
Erase a single record from FRAM.
Erase multiple records from FRAM.

Arguments:
Specifying a single record number zeroes the specified record.
Specify a start record and stop record to zero a range of records.

This leaves the remainder of the FRAM file system invisible.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

Use the ERAS command to change the record to REM-, leaving following records visi-
ble.

This command zeros the FRAM record out, making any records that follow invisible
until an ESAV command rewrite the record.

10.2.38 ETAB

Table 10.52: FRAM/FLASH table dump
Command sample Description
ETAB FRAM & FLASH device table dump

Action:
Dump FRAM/FLASH JEDEC-ID table.

Arguments:
none.

Returns:
sts01,nn* records with device information.
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The entire device ID table is dumped.

208

ICARC FOX Transmitters: 102-73181 KC0JFQ

Each detail line has the following:

Table 10.53: FRAM/FLASH device Table
Column Contents
Write-Mode write/erase strategy
JEDEC-ID device ID bits
Size device size, in bits
Page write page size in bytes
Sctr sector erase size in bytes
Manufact Device manufacturer
Device Device part number

Column:

Write-Mode
A field indicating to the software the write and erase strategy for this device.
The typical FLASH device will be of the FLASH_PAGE type, indicating that the device
can deal with a multi-byte write.
The typical FRAM device will be of the FLASH_FRAM type, indicating the device can
deal with any length write and does not require device erase to update records.z
A not-so-useful device, FLASH_AAI, can write 2 bytes at once. Probably too slow to be
at all useful for this project.
The FLASH_AAI types will not work with the binary loader!

Column:

JEDEC-ID
This is the 3-byte sequence used to recognize the device.
Some devices may appear twice, with slightly different patterns to accommodate the chip
reading method (1st. byte is 0x7F).

Column:

Size
This is the device size, in bits.
FRAM type devices tend to be more expensive as size increases. We use a reasonable size
device, typically 64Kb to 256Kb, to store commands.
Large capacity FLASH type devices tend to be less expensive. These type are used to store
waveform data.

209

ICARC FOX Transmitters: 102-73181 KC0JFQ

Column:

Page
This is the write page size in bytes.
FRAM device will have a page size of 1. This class of device writes a byte-at-a-time at
wire speed. This makes for easy erasing of a single command record (32 bytes).
FLASH device need to have a page size of at least 32 bytes. This lower limit is imposed by
the expecte4d InTel-HEX record size that can be handled by the command parser.

Column:

Sctr
This is the sector erase size in bytes. A size of zero indicates the device functions and a
non-volatile RAM device.
Currently, the FLASH device (U12) is managed as a single lump of memory. It is erased as
a unit.
Sector erase may be fully implements at some point to improve the flexibility of the sys-
tem, but not now...

Column:

Manufact
Device manufactured by.
This is simply obtained from the device data sheet and entered in the table.

Column:

Device
Device part number. This should match package markings.
This is also obtained from the device data sheet and entered in the table.

210

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.39 HEND

Table 10.54: FLASH control HEND
Command sample Description
HEND

Action:
Find start of empty flash device.

Arguments:
None.

Returns:
sts01,nn* response with address of empty space in the flash device.
RDY00,00* response with current stack pointer value and current system time.

The scan occurs with a 4K stride from end of device towards begining.
This provides a means of finding unused areas of a large flash device.

10.2.40 HERA

Table 10.55: FLASH control HERA
Command sample Description
HERA BLOCK 0x<start> erase record
HERA ALL device erase

Action:
Erase region of FLASH device.

Arguments:
BLOCK Erase block: Block Starting Address.
ALL Erase device: No Arguments.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This command has no sanity checking to prevent an unintended
erase operation.

This command is insensitive to the CONF VOICE setting (see section 10.2.8 on page
172). You can use the HERA command to bulk erase audio data in the FRAM device.

211

ICARC FOX Transmitters: 102-73181 KC0JFQ

Also keep in mind that chip erase time for many flash devices are quite long, exceeding
100 seconds for some. This command does not wait for the erase operation to finish, it
simply returns after sending the chip erase or block erase command to the device.
This makes the flash device look dead until the chip erase or block erase operation
has finished. Sending any flash commands will return a BUSY message until the de-
vice reports it is ready.

For the block erase variant of the command; the address argument is passed, un-
changed, along with the block erase command (0xD8) to the FRAM device. The user
must consult the datasheet to correctly form the address to erase the desired area of the
device (typically 64K)
Also take note that the address argument is in hexadecimal!

10.2.41 HDMP

Table 10.56: FLASH control HDMP
Command sample Description
HDMP length start dump 32 byte records

Action:
Dump an area of the FLASH device.

Arguments:
Length (in 32 byte lines) and start address.

Returns:
:20 (InTel HEX dump records)
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

The hex commands (HDMP HERA and :xxxx) are sensitive to the VOICE configu-
ration setting (see the CONF command in section 10.2.8 on page 172). This feature
should be unused with the 102-73181 boards with dual serial memory. This feature al-
lows the 102-73161-25 board to store audio clips in the single serial memory device.

212

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.42 H56K/H115

Table 10.57: H115/H56K
Command sample Description
H56K Set bit rate to 57,600 b/S
H115 Set bit rate to 115,200 b/S
H56K PROG Set bit rate to 57,600 b/S, FRAM loader binary mode
H56K WAVE Set bit rate to 57,600 b/S, FLASH loader binary mode
H115 PROG Set bit rate to 115,200 b/S FRAM loader binary mode
H115 WAVE Set bit rate to 115,200 b/S FLASH loader binary

mode

Action:
Switch bit rate to 57,600 bits/second (control port defaults to 57,600 b/S).
Switch bit rate to 115,200 bits/second (control port defaults to 57,600 b/S).
Switch bit rate to 57,600 bits/second and operate in binary transfer mode.
Switch bit rate to 115,200 bits/second and operate in binary transfer mode.

Arguments:
None.

Returns:
RDY00,00* response with current stack pointer value and current system time. Operating
at the new bit rate.

The clock divisor at this bit rate was off by up to 5%. The data communication between host
and target would not have been reliable on versions prior to 3.93 (changed divisor by 1 count).

213

ICARC FOX Transmitters: 102-73181 KC0JFQ

Older method to speed up the audio loading process (prior to V4).

First, switch the Fox Transmitter over to the higher speed.
V3.68 and prior use H56K to switch to 57,600 b/s.

H56K
sLask.jcn

V3.69 and later use H11 to switch to 115,200 b/s.

H115
sLask.jcn

For either case, the STS and RDY response are, of course, garbled (hence the sLask.jcn or
some other unInTelligible garbage) due to the mis-matched bit rates.
Next switch the monitoring terminal over to match the new bit rate.

.../halo_term -b57600 -SFOX2X

.../halo_term -b115200 -SFOX2X

.../halo_term -SFOX115

And then we can proceed to download the audio HEX file at the new, higher, rate. We
trim the delay between each line sent to the target to around 50 milliseconds (i.e. the -c50
on the call line).

.../fox_simple -b57600 -SFOX2X -c50 -t10 -ffox_73181_rxxa.hex

.../fox_simple -b115200 -SFOX2X -c50 -t10 -ffox_73181_rxxa.hex

.../fox_simple -SFOX115 -c50 -t10 -ffox_73181_rxxa.hex

The higher bit rate reduces the transmission time, of course, and reduces the time the tar-
get spends sending the shortened RDY message.

Do keep in mind that the target serial channel is buffered on the input side (the entire in-
put line is buffered by the ISR) This may allow some overlap to occur, although the time
required to program a 32 byte line in the flash may ultimately limit speed.

H115 WAVE and H56K PROG

The last forms of the command, with either the WAVE or the PROG modifiers, switches
over to the binary loader. The WAVE modifier is used to program FLASH memory. The
PROG modifier is used to program FRAM memory.
When loading FLASH using the binary protocol the target area of the FLASH must be
erased before using the WAVE modifier.
When loading FRAM using the binary protocol it is not necessary to perform an erase op-
eration (HERA dev) to clear FRAM.

214

ICARC FOX Transmitters: 102-73181 KC0JFQ

The binary loader bypasses the file system, directly writing records to FRAM. One record
following the last record sent is cleared to ZERO. A dump of FRAM will show only the
content that was just loaded.
The binary protocol is identical for loading either memory device.
The behavior of this form of the command is to switch bit rates to the specified rate and
then switch the serial port Interrupt Service Routine over to a binary mode in order to
perform a fast download to FLASH or FRAM memory.
Currently, downloading InTel HEX files is rather slow, taking 30 to 60 minutes to load the
audio file system with waveform data. This hook switches to a binary type of processing
where the ISR expects fixed length binary packet data to be sent by the host.
Loading time with the binary handler is reduced to a few minutes for a 500KB FLASH
load and a few seconds for a 300+ command FRAM load.
You must keep the download within the address limits of the target device. Neither the
fox_binary utility nor the software in the fox transmitter do any bounds checking when
loading using the binary protocol.
Software versions later than Version 4 are required to deal with this feature.

10.2.43 :hex

Table 10.58: InTel HEX Record Load
Command sample Description
:hex record InTel HEX record up to 32 bytes long

Action:
Load FLASH device.

Arguments:
InTel HEX record (up to 32 bytes of data)
Data must be naturally aligned (FLASH device restriction).

The flash device data alignment requirements are not enforced by the flash loader,
data records must be generated that do not violate alignment requirements.

Returns:
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

215

ICARC FOX Transmitters: 102-73181 KC0JFQ

Valid Record Types:
TYPE 0: INTEL_RECORD_TYPE_DATA

Memory image data.

TYPE 1: INTEL_RECORD_TYPE_EOF
Indicates this is the last record in a group.

TYPE 3: INTEL_RECORD_TYPE_EXTENDED_SEGMENT
Address bits 19..4
This address data is added to the address in the data record.

TYPE 4: INTEL_RECORD_TYPE_EXTENDED_LINEAR
Address bits 31..16
This address data provides the upper 16 bits of the data record address.

Checksum:
The InTel HEX loader validates the checksum at the end of the hex record before it is
loaded into FLASH. An invalid checksum will cause the record to be rejected.

Overflow:
Writing too many records to the FLASH will cause overflow. The FLASH handler does
not check for addresses that extend past the end of the memory device.

Expect problems to occur if the InTel HEX Load is too large for the device. At a mini-
mum, expect the first audio file to be corrupted.

The FLASH decice requires a seperate erase operation to restore the memory array to all
1s. All we can write to the memory array is 0s. This behavior indicates the an overflo
write will be catastrophic and require a device erase to recover.

The input buffer is examined for the leading colon character before normal command
processing. An InTel HEX Record is diverted and processed as FLASH data.

Sample audio hex record:
:02 0000 04 0000 FA
:20 0000 00 524946465010000057415645666D74201000000001000100A00F0000A00F0000 4F
:20 0020 00 01000800646174612B10000080808180807F8080808080808080808080808080 E2

This example text comes from the audio utility. The embedded spaces are added by the
audio utility to make looking at the record a bit easier on the eyes. These whitespace
characters are ignored, they ar not required.

This command is sensitive to the CONF VOICE setting (see section 10.2.8 on page
172).. See comments in section 10.2.41 on page 212.

When configured to use the FRAM for voice storage, this command will hap-
pily write to the command area (i.e. the bottom of FRAM where commands/se-
quences are stored). Memory allocation is strictly manual.

216

ICARC FOX Transmitters: 102-73181 KC0JFQ

File load accommodations:

The status report generated when encountering an InTel HEX Record is abbre-
viated in an attempt to minimize traffic on the command channel. All that is
reported is a RDY00,00* to indicate we are ready for the next record.
All sts00,00* and STS00,00* reports are suppressed.

10.2.44 HALT

Table 10.59: HALT Instruction
Command sample Description
HALT

Action:
Execute the zNEO HALT instruction until keypress.

Arguments:
None.

Returns:
Stream of periods to indicate the zNEO is fielding interrupts.

sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

This puts the zNEO HALT instruction in a loop to verify that the timer used to gener-
ate the 100Hz scheduling interrupt s functioning.

Any keystroke returns control to the main loop.

217

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.2.45 STOP

Table 10.60: STOP Instruction
Command sample Description
STOP

Action:
Execute the zNEO STOP instruction. This will hang the processor!

Arguments:
None.

Returns:
Nothing as the zNEO stops executing instructions.
A hardware reset is required to recover.

zNEO stops (hangs the system).

This command executes the zNEO STOP instruction.

As there are no hardware provision to bring the processor out of a STOPped state, this
will hang the system.

This testing command may be removed from a future software update.

10.2.46 TEST

Table 10.61: Test Suite
Command sample Description
TEST Misc. test commands

Action:
Pass control to test handler
(Many looping tests will stop with a keypress)

Arguments:
Text.

Returns: (typically)
sts01,nn* response with status and command execution time.
RDY00,00* response with current stack pointer value and current system time.

218

ICARC FOX Transmitters: 102-73181 KC0JFQ

Table 10.62: Test Suite Tests

Command flags Description
none Help List
HLP Help List
DIT CW Interrupt Test
CWR Chipping Rate
SPI SPI path test
I2C I2C path test
LED LED/PTT
U13 U13 mux
TXE TX_ENA (4 sec cycle)
BAT Battery Monitor
TXD Data channel to daughter board
GPX Test GPIO Bits
CFG Dump fox_config struct
NEO zNEO port bit dump

HLP

Help List

DIT

CW Interrupt Timing

CWR

CW Chipping Rate Test

SPI

Activity on SPI pins

I2C

Activity on I2C pins

LED

Toggle Transmit Enable signal

U13

Serial Channel 2 Rx MUX Test

TXE

Toggle Transmit Enable signal

BAT

Continuous Battery Monitor

219

ICARC FOX Transmitters: 102-73181 KC0JFQ

TXD

Serial path to daughter board

GPX

Power Control Bits toggle.

CFG

Dumps configuration information.

NEO

Dumps all the GPIO control register bit patterns

10.3 Sample Sequences
Example code for setting up a FOX Transmitter.

10.3.1 Initialization
This code runs following reset, hence the INI= tag.

When both the TEST and the MAS jumpers are present, we skip this setup step.

Table 10.63: Sample Sequence 1
esav INI=TIME
esav INI=WAIT,0.5
esav INI=TIME
esav INI=EPOC,-5.0
esav INI=CALL KC0JFQ
esav INI=NAME FOX20
esav INI=CONF DRA818
esav INI=MODS S1 300 0
esav INI=MODS S2 300 150
esav INI=TONE 1.6
esav INI=CWPM 25
esav INI=FREQ 144.150
esav INI=STAT

10.3.2 TIME
Time Set. This loads the 32 bit time from the TOY clock into the system time field. Take note
that the command is issued twice to get a reliable load from the DS1672. This is required in or-
der for multiple units to operate synchronously.

220

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.3.3 EPOC
Time Zone Set. Somewhat akin to establishing an epoch from which time starts.
This is not required in order for multiple units to operate synchronously, it simply provides for
the command echo to reflect local time.

10.3.4 CALL/NAME
Sets the callsign and nickname for the CQ and SK messages the precede and follow message traf-
fic.

10.3.5 CONF
Tells software the RF subsystem in use. traffic.

10.3.6 MODS
These are the modular schedules. Up to 10 schedules may be processed with this revision of the
software. Although it would be possible to operate more schedules, in practice processing addi-
tional schedules requires more battery power to support the additional CPU cycles.

10.3.7 TONE
Sets the audio tone frequency.

10.3.8 CWPM
Sets the code chipping rate to 25 WPM.

10.3.9 FREQ
Selects the transmitter frequency. Although any frequency may be specified in this command,
only a limited set of frequencies can actually be generated. The software selects the closest avail-
able frequency.

10.3.10 STAT
Displays the system status on the USB serial port.

221

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.4 Announcement
This code also runs following reset, the ANN= tag keeps the RF activity separate from the ini-
tialization.
This group of commands are run following the INI= commands to allow the transmitter to
broadcast a status message at power on.

When both the TEST and the MAS jumpers are present, we skip this setup step.

Table 10.64: Sample Sequence 3
esav ANN=TONE 1.0
esav ANN=CWPM 20,-1,-1,-1,-1
esav ANN=BEGN
esav ANN=BATC V 7.2
esav ANN=BATC EV 7.2
esav ANN=DONE
esav ANN=FREQ 144.285
esav ANN=TONE 1.6
esav ANN=CWPM 15
esav ANN=STAT

10.4.1 TONE
Set the pitch of the code.
The pitch of the dits and dahs may be useful as an indication of what type of message this is.

10.4.2 CWPM
Set the message to a comfortably high speed to get the message sent quickly.

10.4.3 BEGN
Send the CQ message with our callsign.

10.4.4 BATC
Send battery report in code (as opposed to voice).
Both forms report battery voltage with the second encoding the volts and tenths into a seried of
TTTT and EEE characters. Number of dah characters representing volts and the number of dit
characters representing tenths.

10.4.5 DONE
Send our callsign and the SK message.

10.4.6 FREQ
Change over to the operating frequency for the group.

222

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.4.7 TONE
Change over to the target audio frequency.

10.4.8 CWPM
Change over to the target chipping rate.

10.4.9 STAT
This sends text to the UART.
This is a diagnostic aid for when you are hooked up to the USB port to configure the device.

10.5 Sample Sequences
Example code for setting up a FOX Transmitter.

10.5.1 Schedule 1 Sequence
This code is the S1 sequence.

Table 10.65: Sample Sequence 4
esav S1=CWPM 15
esav S1=BEGN
esav S1=WAIT 1
esav S1=CODE IOWA CITY
esav S1=CODE AMATEUR RADIO
esav S1=CODE CLUB FOX HUNT
esav S1=WAIT 1
esav S1=CODE This is a test
esav S1=CODE of the code
esav S1=CODE generator in the
esav S1=CODE KC0JFQ FOX TX
esav S1=CODE built for the
esav S1=CODE IOWA CITY
esav S1=CODE AMATEUR RADIO
esav S1=CODE CLUB FOX HUNT
esav S1=WAIT 3
esav S1=BATC V
esav S1=WAIT 3
esav S1=DONE

10.5.2 CWPM
In this example, we change the chipping rate for the CW generator at the start of each sequence.
The chipping rate can be changed at any time, i.e. in the middle of a message, if desired.

223

ICARC FOX Transmitters: 102-73181 KC0JFQ

10.5.3 BEGN
Beginning of message marker. This enables the RF section and sends out a CQ call with the
stored callsign.
The current system time is stored when this command runs so it can be differenced with the cur-
rent system time at a later point to measure the time required to send a message.

10.5.4 WAIT
Leaves an unmodulated carrier on and waits the specified number of seconds.

10.5.5 CODE
This sends a few characters of the message. Each storage record holds up to 25 bytes of message
text.

10.5.6 DONE
Terminates the message. Sends the callsign and SK to end the message. If the USB UART is
connected, the time required to send the message is in the status message.

224

Chapter 11

Practical Sequencing

An exercise in maintaining your sanity.

11.1 Sequences

Sequences that are used to initialize and announce.

The handling of the TEST and MAS jumpers was reorganized in the V3.54 release. The
jumpers now define one of four operating modes.
Three of the modes appear very similar to the previous release. Added in the V3.54 release is
an error recovery mode where both jumpers may be installed to completely suppress processing
commands during startup. This leaves the system completely unconfigured allowing the FRAM
to be erased and reloaded.
See the table in section 5.3.1 on page 99.

225

ICARC FOX Transmitters: 102-73181 KC0JFQ

11.1.1 INI=

Basic Initialization.
This separates station specific setup tasks from the operating sequence.
This is the station specific setup, unique to each foxhunt transmitting station.

INI=TIME "tickle DS1672"
INI=WAIT 0.5 "allow DS1672 to wake up"
INI=TIME "get time from DS1672"
INI=EPOC,-5.0 "CDT, offset to local time from ZULU"
INI=NAME,xxx "tactical call"
INI=CALL,xxx "station callsign"
INI=CONF,SI5351 "Hardware we’re running on"
INI=CONF,CLK2,8MA "SI5351 output configuration"
INI=FREQ,144.150 "Common announcement frequency"
INI=FOFF,-14.0 "Document SI5351 frequency offset"
INI=REM-,FOX_INIT_2023.FOX "comment with source filename"
INI=REM-,STRT,00:00:00 "comment"
INI=MODS,S0,300,0 "Schedule 0"
INI=MODS,S1,300,60 "Schedule 1"
INI=MODS,S2,300,120 "Schedule 2"
INI=MODS,S3,300,180 "Schedule 3"
INI=MODS,S4,300,240 "Schedule 4"
. . .
INI=FOFF,-14.0 "note the frequency offset"

The INI=FOFF,-14.0 notes the frequency offset used to generate the external frequency ta-
ble. The V3.72 release incorporates a small table, without offset, to allow the fox transmitter
to be characterized before selecting the appropriate external frequency table.
The FOFF command notes the offset in use having no other functional effect on the tranmsit-
ter system. The specified offset shows up in the output of the STAT command.

11.1.2 TEST=

Test Jumper sequence
This sequence runs when the TEST jumper is installed and the MAS jumper is not installed.
As the INI= commands have already run, we should have loaded the callsign and nickname into
the running system as well as the current time from the TOY clock.
The TEST= commands may change or redefine the configuration as needed.

TEST=CONF,SI5351 "Same as INI="
TEST=CONF,CLK0,8MA "Testing the other RF path"
TEST=FREQ,144.150 "Same as INI="
TEST=CWPM,30,-1,-1,-1,-1 "Fast code so we can manually drive the system"
TEST=CONF "Status Report"
TEST=STAT "Status Report"

We are free to put anything useful in this file. It is perfectly permissible to EZER and
ERAS records, rewrite and add new records, test and repeat to achieve the your desired test-
ing goals.

226

ICARC FOX Transmitters: 102-73181 KC0JFQ

11.1.3 MAS=

Master Jumper sequence
The MAS= sequence will run when the MAS jumper is installed and the TEST jumper is not
installed..
It is run after the INI= sequence.

MAS=CWPM 35,-1,-1,-1,-1
MAS=STAT

The labeling of this jumper is a left-over from the days when we tried to implement a time
synchronization methodology that could be used in the field. With the introduction of the
102-73181-10 hardware, this the synchronization feature has been deprecated.
The 102-73181-10 hardware moves the configuration channel (i.e. the USB serial port) to the
externally accessible port and repurposes the 2nd. serial port (i.e. the time synchronization
network) for accessing the DRA818/SA818 RF module.
The MAS= file functions identically to the TEST= file. You are free to make any conve-
nient use of it.

11.1.4 ANN=

Announcement message.
This sequence is run after the INI= sequence when neither the TEST jumper nor the MAS
jumper are installed.
The station common setup was already done in the INI= sequence, so it’s not repeated.
This message tells the hunt organizer that this station is alive and transmitting when it is turned
on.
Note the parameter substitution for the callsign and tactical callsign.

ANN=REM-,FOX_ANN_V2023.FOX "comment with source filename"
ANN=TONE,1.0 "audio frequency, KHz"
ANN=CWPM,20,-1,-1,-1,-1 "Code rate"
ANN=BEGN "Begin transmitting (RF on)"
ANN=TALK,<CALL> "verbal callsign"
ANN=TALK,<NAME> "verbal tactical call"
ANN=WAIT,1 "delay 1 second"
ANN=BATV,V "verbal battery report, Voltage"
ANN=BATV,I "verbal battery report, Current"
ANN=WAIT,.3 "delay 300mS"
ANN=DONE "Done transmitting (RF off)"
ANN=FREQ,144.250 "Change to new operating frequency"
ANN=STAT "status report (in case you’re looking)"
ANN=RUN0,S0 "Enable the ZERO schedule"
ANN=REM- "Remark"

This feature was implemented to make life easy for the hunt organizer.
In the example we announce the stations callsign as a sanity check. It should be what you
expect it to be, or something is off.
We also verbalize the station nickname, again so that the hunt organizer can verify which unit
is being placed.

227

ICARC FOX Transmitters: 102-73181 KC0JFQ

Battery condition is also vocalized. We have the capability so we use it to, again, provide the
hunt organizer with useful information concerning the condition of the battery in the trans-
mitter.

So when you drop a unit, you can wait until the last moment to turn the unit on and still
know that it is operating as the desired station and that the battery has sufficient power to last
through the entire hunt.

11.1.5 ID=

Identification Records.
These records are not necessary for the fox transmitter to function properly.

These are strictly documentation records for the benefit of the operator. Some of these are gener-
ated by the utilities that load FRAM and FLASH memory to document which files were created
the load and the time when the load was created of the file loaded.

Here is an example of the ID= records found in the FRAM of FOX36 at the time this section
was written:

0: ID=LT,FOX-Binary-Loader V1.4
1: ID=LT,2025-04-21T19:46:25
2: ID=FR,FOX36_KC0JFQ.log
3: ID=FR,2025-04-21T19:46:20
8: ID=FL,talk_73181_2025_TREK.fox
9: ID=FL,2025-04-21T18:44:04

The records in the TALK= directory are here

104: ID=FL,SIZE,0xC1B80

Files INI=, MAS=, TEXT=, ANN=, are here

185: ID=S2,talk_73181_2025_TREK.hex
194: ID=S3,talk_73181_2025_TREK.hex
208: ID=S4,talk_73181_2025_TREK.hex

The external frequency table records are here

372: ID=FR,SIZE,0x2E20,373

This listing has the record numbers for each line. It should also be obvious that records in this
filesystem all start with ID=. As illustrated here, these records are scattered throughout the
ID= filesystem.

228

ICARC FOX Transmitters: 102-73181 KC0JFQ

The fox_binary utility.

The fox_binary utility dramatically reduces load time both command sequences and audio
files. We use it for loading both FRAM and FLASH.
This utility switches the system to operate a high speed binary protocol that reduces traffic
volume sent over the communications link. When the load is complete, the utility switches the
system back to normal interactive operation.
You can easily avoid conflicts by running the fox_binary utility and the halo_term utility
from one terminal window. This prevents both from running at the same time. This prevents
halo_term from capturing the ACK response required by the fox_binary utility.

The fox_binary utility with command sequences:

The fox_binary utility places the first four ID= records that indicate that the fox_binary
utility effected the load.
The first record (number 0) simply notes that the FRAM was loaded by the fox_binary util-
ity. The fox_binary version string also shows up to allow us to track changes to what records
we should expect to see inserted into FRAM by the fox_binary utility.
The first date (record number 1, ID=LT, where LT stands for Load Text) indicates the
fox_binary utility version and when the fox_binary utility was run to load the FRAM. The
date tag will change every time the FRAM is updated using the fox_binary utility.

Record number 2 is the file (log file from fox_simple) that was used to load the FRAM. This
file has all the translated commands ready to copy directly into FRAM. The fox_simple util-
ity is used in a shell script to build the FOX36_KC0JFQ.log.
The second date (in record number 3) is the file creation date from the FOX36_KC0JFQ.log
file. It the modification date stamped by the file system on the host system.
The fox_binary utility also tracks how much of the FRAM is in use and places a final
ID=FR,SIZE record showing the current use.
The next free address and the record count are shown in record number 372.

The fox_binary utility with audio files:

When loading an audio file, the fox_binary utility inserts records into the ID= filesystem
that describe the audo file.
These are the ID=FL records, the FL simply indicating FLash memory information.
The fox_binary utility notes the source audio hex file in record number 8. The audio hex file
modification date is in record number 9. And finally the size is saved in record number 104 of
the audio file in the FLASH memory.
We see the next free address in the FLASH (always 128 byte aligned)

229

ICARC FOX Transmitters: 102-73181 KC0JFQ

Records inserted from within sequences.

You are free to use the ID= filesystem to store any informaiton you find useful. You are lim-
ited only by the size of the FRAM and how the search speed affects the timing of operations.
In our example above, we also have records that are inserted at the begining of the S2=
(record number 185), S3= (record number 194), and S4= (record number 208) sequences.
Were you to dump (using the EDMP command) the contents of the FRAM on a working
system you would see any sequence documentation records adjacent to the sequence they are
in. The utilities take no part in creating them.
The examples here are to illustrate the these three command sequences require the
talk_73181_2025_TREK.hex file be present in FLASH for audio to be produced.
Note the correlation in the filename from the ID=FR record and the ID=S2 record. The
TALK directory matches up with the audio file so we should be able to make use of the extra
voice clips in this file.

11.1.6 Sequence Fault Recovery

Master Jumper and Test Jumper

In the event that the sequence commands loaded into FRAM prevent the Fox Transmitter from
operating, you can bypass all initialization steps by installing both the MAS jumper and the
TEST jumper.

With both jumpers installed you have access to the command decoder before any com-
mands in the FRAM are executed. At this point you can erase FRAM and reload using the
fox_simple loader. You can also directly load a new image (without the need to erase the cur-
rent contents) using the fox_binary loader.

With both jumpers installed the contents of the FRAM are left undisturbed. You can inspect
the FRAM using the EDMP command. The EDMP command can be used with a match
string if that aids in your search for the problem.
...

230

ICARC FOX Transmitters: 102-73181 KC0JFQ

11.1.7 S0=

An example message block. This is sent on the S0 schedule.
The station reports, in this example, are sent with an audio tone frequency of 1KHz at 20WPM.
The other parameters to the CWPM command select standard timing.
The body of the message is sent at a different audio frequency and a different CW rate.

S0=REM-,1,MINUTE,25WPM "Comment text"
S0=CWPM,20,-1,-1,-1,-1 "Set code to 20WPM with standard timing"
S0=TONE,1.0 "Set audio tone"
S0=BEGN "Begin transmitting (RF on)"
S0=TALK,<CALL> "verbal callsign"
S0=TALK,<NAME> "verbal tactical call"
S0=WAIT,0.5 "500mS delay, separate CW from voice"
S0=BATV,V "verbal battery report, Voltage"
S0=BATV,I "verbal battery report, Current"
S0=WAIT,0.5 "500mS delay, separate voice from CW"
S0=TONE,1.2 "Change audio tone"
S0=CWPM,25,-1,-1,-1,-1 "change code to 25WPM"
S0=WAIT,0.5 "500mS delay (not useful here)"
S0=CODE,IOWA,CITY "send CW message"
S0=CODE,AMATEUR,RADIO "more"
S0=WAIT,0.5 "500mS delay"
S0=CWPM,20,-1,-1,-1,-1 "change code back to 20WPM"
S0=TONE,1.0 "set audio tone back"
S0=DONE "Done transmitting (RF off)"

Most of the 60 second message is taken sending station status (i.e. the battery condition) and the
basic FCC identification.
S0=BEGN sends a CQ with the callsign. We also verbalize the battery condition to allow the
event host to monitor station operation.
DONE sends callsign.followed by SK to comply with FCC identification requirements.

11.1.8 S0= (102-73161 circuit board)

An alternate message block for the 102-73161-25 boards. This is sent on the S0 schedule.
Similar to the previous schedule, but tailored to the smaller memory footprint with the 102-73161
boards.
The callsign and tactical callsign are stored in the back of FRAM, because the FRAM is much
smaller than the FLASH device on the 102-73181 boards. We can identify the unit verbally with-
out having to be able to read code.
The battery report is not verbal, but in code.
The BATC,V,7.2 request a voltage report with a low battery limit of 7.2 volts. If the battery
voltage is above the specified trip point, the code report will start with BATC HI HI and if be-
low the trip point the report starts with BATC SOS SOS. These two patterns are easily recog-
nized to allow the battery voltage to be picked out of the code stream.
The BATC,EV,7.2 switch from sending the battery voltage directly in code to sending an en-
coded form, again being easy to read for those not proficient in code. The units voltage is sent as
a series of T (dah) characters. The tenths field is sent a a series of E (dit) characters.

231

ICARC FOX Transmitters: 102-73181 KC0JFQ

S0=CWPM,20,-1,-1,-1,-1 "Set code to 20WPM with standard timing"
S0=TONE,1.0 "Set audio tone"
S0=BEGN "Begin transmitting (RF on)"
S0=TALK,<CALL> "verbal callsign"
S0=TALK,<NAME> "verbal tactical call"
S0=WAIT,0.5 "500mS delay, separate CW from voice"
S0=BATC,V,7.2 "CW battery voltage report, reading in code"
S0=BATC,EV,7.2 "CW battery voltage report, reading simple encoding"
S0=WAIT,0.5 "500mS delay, separate voice from CW"
S0=TONE,1.2 "Change audio tone"
S0=CWPM,25,-1,-1,-1,-1 "change code to 25WPM"
S0=WAIT,0.5 "500mS delay (not useful here)"
S0=CODE,IOWA,CITY "send CW message"
S0=CODE,AMATEUR,RADIO "more"
S0=WAIT,0.5 "500mS delay"
S0=CWPM,20,-1,-1,-1,-1 "change code back to 20WPM"
S0=TONE,1.0 "set audio tone back"
S0=DONE "Done transmitting (RF off)"

11.2 Managing Schedules
Assume that you have the schedules stored on a host of some type, nominally a Linux box as
that’s where the download management utility was created.
Create a file for the master unit, for example Fox_1.fox. Place the initialization commands in
this file. In particular the unique callsign for the first unit, something like KA0ABC/1, and the
operating frequency, such as esav INI=FREQ 144.299. Look in the examples for a more mean-
ingful list.
We will also define all of the schedules in this file, these are the esav INI=MODS S1 10:00 00:30
lines that define when each message sequence will be transmitted.
Set the master time update command: esav MAS=TSND
Set the master: esav INI=MODS MAS 5 3.

All the messages are scheduled to begin at the very beginning of the period. This staggering of
the time update command prevents the time update message from causing the message traffic to
be dropped.

Create your message traffic, one message group to a file, using a sequential schedule numbers for
each. The first file would be, fox example, message_1.fox followed by message_2.fox, etc.
These should define the audio tone sav S1=TONE 1.4, the chipping rate esav S1=CWPM 20,-1,-
1,-1,-1, and initiate message transmission esav S1=BEGN.
The text of the message follows, a few words per line as follows: esav S1=CODE FOX HUNT.
Keep in mind that each record in the flash file system is limited to 32 characters, leaving less
than 28 available for actual message text.
End the transmission with esav S1=DONE and esav S1=TSET to power down the transmitter
and update the system clock from the TOY clock.

232

ICARC FOX Transmitters: 102-73181 KC0JFQ

Now you can go back and add #include message_1.fox for each message file to each of the
Fox_1.fox files to include the messages. Given a large FRAM device, this will all fit.
Now you can used the fox_simple utility to download the Fox_1.fox file into the first fox. The
#include lines will drag in the message text. Each unit will have an identical schedule and mes-
sage buffers.
At this point you can manually remove the unwanted schedules from each unit using the ERAS
n command. It is vital the the ERAS n command is used to clear the unwanted schedule com-
mands from memory as the EZER command will zero out the record, hiding the rest of the setup
information in the FRAM from view.
To replace a schedule, we would use the EZER command to clear the command to be replaced
and then use ESAV to load the replacement command which will end up being placed into the
zero-ed command and making everything visible again.

11.3 Time Synchronization days(s) prior to foxhunt
The following may all be checked days before the fox hunt.

To synchronize time before the fox hunt, you connect to your desktop (or laptop) and run the
fox_simple program to set the TOY clock.
The 102-73181-5 and all 102-73161-* boards are accessed using the USB port, so the case must
be opened. The 102-73181-10 boards may be accessed using the externally accessible 3.5mm jack.
A 50 Ohm load is required when powering-on the unit to avoid damage to the RF subsystem.
One by one connect each Fox Transmitter and run the fox_simple program to set the TOY clock.
Typically the unit is configured for the hunt (i.e. the TEST and MAS jumpers are empty), so
you will need to wait for the announce message before sending the time update.
The TOY clocks have probably not been trimmed, so they will drift apart, but the error is small
enought that setting the time a day or two before the hunt should not cause a problem.

11.4 Audio Frequency
The system is designed to allow operating multiple units on a single frequency while having only
one transmitter active at a time. To make distinguishing individual units a bit simpler for novice
trackers, each unit may be configured to produce a unique audio frequency. the TONE command
may be added at the beginning of the message sequence.
This feature may also be used to allow masquerading. Consider a hunt with three known or ad-
vertised transmitters, each of which operates on a unique audio tone. A fourth unit can masquer-
ade as any (or all) of the known/advertised units.
The tone may also change within a message. Simply adding a tone command will change the tone
at the point the command is encountered.

233

ICARC FOX Transmitters: 102-73181 KC0JFQ

11.5 Carrier Frequency
The system is also designed to allow selecting the carrier frequency.
Nominally, you would select a common carrier frequency in the INI= file so all units send their
announce message on one common frequency.
You then set the operating frequency at the end of the ANN= file. This allows multiple hunt
groups to share one INI= file while keeping the all of the announce message traffic on a common
frequency.

Bear in mind that the FREQ= command may appear in the schedule. The software architecture
allows you to change the frequency right in the middle of a message!

11.6 Accessing the USB port
The USB port is mechanically inaccessible because it is inside the box on older boards (102-
73181-5 and earlier). This, then, requires unscrewing and removing the cover.
Having an exposed USB port in the field is inviting foreign material to take up residence in the
exposed connector. Is is not recommended to modify the case to allow use of the USB connector
with the cover in place. Simply operate the unit on the bench with the cover removed.

The 102-73181-10 units move the the serial port over to the connector that was the network time
port to provide access without having to open the box.
The network time port was never used, it having been reallocated to the DA818/DRA818 tran-
ceiver modules.
This move eliminates the need to open the box to update the TOY clock, the FRAM, or the
FLASH.

11.7 Accessing the 3.5mm port
Experience with the ICARC club hunts indicate that the 3.5mm port doesn’t seem to collect de-
bris. You may consider covering the port during the hunt with a bit of tape or a label.
Amazon lists a quantity of 3.5mm Earphone Plug Covers for a few dollars. These should provide
a convenient means of keping debris out of the serial port jack.

234

Chapter 12

fox_simple Utilities

This utility is used to load the FRAM and FLASH in the fox transmitter.
This utility is written in plain-old C to run on a Linux box.

One of the fox_simple utility functions is to send time updates to the target system. Time up-
dates are synchronized on the host system to occur as seconds change, that is to say when sub-
seconds on the host system are very close to zero.
The fox_simple utility will update time synchronously.

12.1 fox_simple utility: Command Line Arguments

Descriptions of the command line arguments used with the fox_simple utility.
This is not an exhaustive list, only showing the switches used to load sequence files and audio
files.

12.1.1 fox_simple -S <port>

Serial Port Name.
This argument provides the nickname of the serial port we will use to talk to the target
fox transmitter. The nickname is used to lookup the serial port operating parameters
(bit rate, parity, etc.) and the full path in the /dev filesystem to the serial device.
In our examples that follow, the FOX2X refers to an FTDIchip USB to serial cable.
The setup table specifies, for this device, the bit rate of 57,600, 8 data bits, and no
parity.

12.1.2 fox_simple -c <delay>

Change in inter-line delay.
The default delays imposed after each line delivered to the target may be shortened us-
ing the switch. Shortening the inter-line delay will, of course, speed up the load opera-
tion.

235

ICARC FOX Transmitters: 102-73181 KC0JFQ

12.1.3 fox_simple -t <time generation>

Reduce the precision of the time delivered to the target.
Without this switch, the full UNIX time field is sent to the fox transmitter. Using this
switch reduces the time to cover the specified number of days so that manually looking
at the time value is more human friendly.

12.1.4 fox_simple -C <Callsign>

Substitution value for ’call’ in the downloaded file.
Set the station callsign in the target file (see the -f switch) by substituting occurrences
of the ’call’ string with the <Callsign> supplied here.
This is to allow a single setup file to be used for a large group of fox transmitters.

12.1.5 fox_simple -N <Nickname>

Substitution value for ’name’ in the downloaded file.
Set the station nickname in the target file (see the -f switch) by substituting occur-
rences of the ’name’ spring with the <Nickname> supplied here.
This is to allow a single setup file to be used for a large group of fox transmitters. The
station name, in particular, should be unique for each transmitter.

12.1.6 fox_simple -Q <freq>

Substitution value for ’freq’ in the downloaded file.
This is used to set the target operating frequency for the fox transmitter. When setting
up a multi-group hunt, we can still make use of a single setup file using this substitu-
tion to separate groups by frequency.
This substitution usually occurs at the very end of the INI= setup.

12.1.7 fox_simple -R <schedule>

Substitution value for ’run’ in the downloaded file.
Again, we manage the setup of a large group of transmitters by providing a sched-
ule substitution switch. The operating schedule for transmitters in a group will have
a common period, but unique offsets. This is used to provide a unique offset for each
transmitter in a group.

236

ICARC FOX Transmitters: 102-73181 KC0JFQ

12.1.8 fox_simple -A <offset>

Substitution value for ’ftab’ in the downloaded file.
This is an accommodation to manage external frequency tables for the SI5351 where
your set of transmitters all have slightly different reference crystal operating frequen-
cies.
We generate a frequency setup table for each possible offset and use this switch to se-
lect the appropriate frequency table to load.

12.1.9 fox_simple -X <key=value>

Generic substitution where ’key’ is replaced by value in the downloaded file.
This increases the flexibility of managing multiple transmitters in a group using a single
confiscation file.

12.1.10 fox_simple -f <filename>

Input file name.
This is the master sequence file.

12.2 fox_simple utility: Loading Sequence Files

Listing 12.1: FOX2X_KC0JFQ-8
8# /home/wtr/Radio/halo_term/ fox_simple
9# −fFOX2X_KC0JFQ. fox −lFOX2X_KC0JFQ. log
10# −Xchrp1=6,0 −Xchrpfrq =1.0
11# −Xsched=S0 −Xtone=1.0
12# −Xstooge=120 −Xchirp_up=0
13# −Xchirp_dn=0 −Xruns6 =600 ,300
14# −Xsynth_dev=SI5351 −Xsynth_set1=8MA
15# −Xsynth_set2=CLK0 −Xta lk _f i l e=talk_73181_rxxk .

↪→ fox
16# −Xsx_stooge=SX_STOOGE. fox −Xspare1=not
17# −Xspare2=used −Xbatvc=BATV
18# −CW0JV −NFOX24
19# −R360 ,180 −Q144 .285 −Afreq_5351 −08. fox

Here is a typical call line to generate a log file for fast loading into one of the transmitters
used by the Iowa City Amateur Radio Club. These example lines are extracted from the
FOX2X_KC0JFQ.fox file with the line numbers reflecting their place in the file. They
all use the same FTDIchip serial cable to communicate with the fox transmitters which are
plugged into the external 3.5mm jack.

Most of the command line switches match, with just three unit specific switches.

237

ICARC FOX Transmitters: 102-73181 KC0JFQ

The units all operate using the club callsign (W0JV), so the -C switches are the same. The
inter-line delay and time truncation switches are also all the same; no need for anything
unique here.
The units all must have unique nicknames. The nickname will be used by the fox transmit-
ter to select an audio clip to verbally identify the fox transmitter as part of its sign-on mes-
sage.
The target operating frequency, 144.325, is the same on all units. We provide it here as the
FOX2X_KC0JFQ.fox file is used to load multiple groups that operate of unique frequen-
cies.
The scheduling parameters, supplied through the -R360,* switches must be unique and prop-
erly spaced. In our example here, take note of a 6 minute period, with each unit offset by and
additional 60 seconds.
If the transmitted message fits within the allotted 60 seconds we should never hear two trans-
mitters operating at the same time.
The next variable switch argument is the frequency offset of the reference crystal oscillator.
These offsets were measured during unit commissioning and are listed here to allow the appro-
priate external frequency table to be selected.
The last switch on the call line is the name of the sequence file we will load into the fox trans-
mitter. With the above listed substitutions, each transmitter ends up a few sequence com-
mands that are unique to the transmitter. Each transmitter uniquely identifies itself and runs
at the correct time. We have also loaded the correct external frequency table to let the SI5351
generate the correct carrier frequency.

12.3 fox_simple utility: Loading Audio Files

The audio file system directory is loaded as part of the main sequence load. The ’talk_file’ string
is replaced by the file specified on the command line that builds the download image.

Listing 12.2: FOX2X_KC0JFQ-30
30# Limited vo i c e s t o rage
31#
32# //#inc lude talk_73181_1 . fox
33#inc lude ’ t a l k _ f i l e ’

Example command line to load HEX file:
fox_simple -SFOX2X -c50 -t10 -f/home/wtr/WAV/fox_73181_r4k.hex
fox_binary -SFOX2X -a/home/wtr/WAV/talk_73181_2025_TREK.hex

Loading the audio file system is somewhat simpler in that we typically would not bother to
tailor the contents of the audio file system for each unique fox. Rather we simply provide a
complete set of audio clips to each transmitter with many of the voice fragments going un-
used. Any given transmitter would use only one nickname and ignore all the rest.

238

ICARC FOX Transmitters: 102-73181 KC0JFQ

Note that the load image for the fox simple utility must not have any blank lines!

If the fox simple utility encounters a zero-length line, it stops processing the file at that
point.
You may, if you want empty space in the file, simply pad with REM- lines. The fox
simple utility recognizes this keyword and skips sending it to the target system,.

We can speed up the load process by boosting the serial rate to 115,200 bits per second al-
though this isn’t strictly necessary. The call-line on line 22 may be used directly without al-
tering the serial rate of the fox transmitter. If the call-line on line 23 is to be used, the H115
must be issued to switch the fox transmitter serial rate.
Switching to the higher rate reduces the time spent sending serial bit to the fox target, but
will not change the time the fox transmitter requires to decode and store the hex record. The
-c 50 switch seems to allow time for the hex record decode and the time required to program
a 32 byte chunk of the flash device.
There is some overlap that is possible as the fox transmitter will buffer incoming traffic while
waiting for the flash device program operation to complete. This is open-loop, so the -c switch
ultimately controls the programming time allowed for the flash device.
We will always update the TOY clock when fox_simple runs, so we specify the truncation
switch (-t 10).

The input file in this case is the InTel HEX file for the audio file system. It should have been
generated with 32 data octets per line; anything longer will overflow the input buffer. Shorter
lines (i.e. 16 octet lines) will program the flash device correctly while doubling the required
loading time.

12.4 fox_binary utility: Fast Binary Loader

The time required to load the FLASH memory using the text command interface will get excruci-
atingly slow as the size of the audio image increases. This gets frustrating if you are working out
a new set of audio clips or loading a large skulk of transmitters.
To address this, the version V4.00 release of the Fox Transmitter operating software adds a bi-
nary loader feature. This capability is invoked using either the H115 WAVE or the H56K
WAVE command.
Version V4.01 expands on this by expanding this to provide for loading the FRAM in the same
manner. For loading FRAM, you will need the log output from the fox_simple utility (run with-
out the -S argument).
Also bear in mind that updating the FRAM using the fox_binary utility does not require the
FRAM to be erased prior to reloading. This speeds up loading of the FRAM be eliminating
steps.

The fox_binary utility operates a simple binary protocol over the command link that is used to
load operating sequences. The H115 WAVE or H56K PROG command (note the WAVE or
PROG modifier/argument) will switch to the desired bit rate and run the binary protocol.

The following command line flags operate just like those from the fox_binary utility.

239

ICARC FOX Transmitters: 102-73181 KC0JFQ

12.4.1 fox_binary -h

Display a short help text.
This lists the command line arguments processed by the fox_binary utility.

12.4.2 fox_binary -d

Increase Debug Level.
This allows debug text to be emitted by the fox_binary utility.

12.4.3 fox_binary -F

Switch bit rate to 225,200 bits/sec.
This sends the H115 command to switch over to the binary protocol at the elevated bit
rate.
After the last record is sent, the fox transmitter and the fox_binary utility both
switch back to operating at 57,600 bits/sec

12.4.4 fox_binary -S <port>

Serial Port Name.
This argument provides the nickname of the serial port we will use to talk to the target
fox transmitter. The nickname is used to lookup the serial port operating parameters
(bit rate, parity, etc.) and the full path in the /dev filesystem to the serial device.
In our examples that follow, the FOX2X refers to an FTDIchip USB to serial cable.
The setup table specifies, for this device, the bit rate of 57,600, 8 data bits, and no
parity.

12.4.5 fox_binary -a <file>

Load Audio File (FLASH).
The audio file loader expects InTeL HEX records. Additional text may be intersperced
in the file and it will be ignored.
The -a flag will take either filename.hex or filename. The .hex will be added if it’s
not there.

240

ICARC FOX Transmitters: 102-73181 KC0JFQ

12.4.6 fox_binary -f <file>

Load Sequence File (FRAM).
The sequence command loader expects a log file processed by the fox_simple utility.
All substitutions will have been performed by fox_simple to produce this file. It is a list
of the actual commands that are to be sent to the target.
WE still need the fox_simple utility to perform all the substitutions. This results in a
log file, fragments of which are shown in listing on page 241.

Sample -f file fragment from somewhere in the FOX22 image:

Listing 12.3: FOX22_KC0JFQ.log
71072 esav TALK=TS4_BOSTON 386688
72073 esav TALK=2K1_H_9000 395264
73074 esav TALK=2K1_GD_EVE 415616
74075 esav TALK=2K1_CHESS2 427264
75076 esav TALK=2K1_ENJOYA 439552
76077 esav TALK=2K1_JUST_MOM 447616
77078 esav TALK=2K1_MSG_4_U 471168

The first column is, in effect, the record number in the FRAM file system (starting at 0).
This field is used to calculate to address in FRAM where this record will be loaded.
The second column is the command to save the record to FRAM which whould have been
used by the fox_sdimple utility. It will not be used by fox_binary.
The final text group is the command that will be saved to FRAM. In our case, this is ex-
actly what need to be stored in the FRAM.
Looking at the FOX2X_KC0JFQ.fox which was used to generate this log file, note that
the unit-unique fields have all been replaced with their target values. Only the substitu-
tions that are performed by the Fox Transmitter remain (i.e. <CALL>and <NAME>).

12.4.7 fox_binary utility: Inserted Records

The fox_binary utility inserts several records into the load during the download process.
These inserted records provide some details of the download operation and the file that was
loaded into the target.

The inserted documentation records are all in the ID= file (so may be inspected using a
EDMP ID= command).
This record looks more-or-less like this:

ID=LT,FOX-Binary-Loader V1.4

The LT key simply indicates this is a Load Text record.
The FOX Binary Loader version is included as the first inserted record. This record serves
to document that the FRAM file system was loaded using the binary loader.

241

ICARC FOX Transmitters: 102-73181 KC0JFQ

The local time when the FOX Binary Loader was run to load the FRAM file is shown on the
second line.
This record looks more-or-less like this:

ID=LT,2025-04-20T14:10:24

The final group of records show where and when the file contents came from, that is the file
that sourced the records in the FRAM filesystem.
The next inserted record is the filename of this load image file. It looks similar to this:

ID=FR,FOX36_KC0JFQ.log

The FR key indicates this is information about the FRAM memory device.

We also publish the file creation time, as this is invariably useful at some point.
This record looks more-or-less like this:

ID=FR,2025-04-20T14:00:48

The date format follows ISO 8601 where most significant numbers are on the left.
The time should be expressed in local time.

Finally, as the last record inserted by the FOX Binary Loader is the memory allocation of the
FRAM.
This record looks like this:

ID=FR,SIZE,0x2800,324

The allocated size of the FRAM in bytes (in hexadecimal) and the number of records (in
decimal).

Externally inserted records

External processing scripts may insert records into the ID= filesystem for the same reason
that the FOX Binary Loader does. It is expected that external utilities will follow the conven-
tions described here. In particular, keep the date format consistent!
We can also insert records into the ID= filesystem in any of the 10 sequences to indicate
which audio file is required for proper operation.

Externally inserted records, fox_simple utility

The audio processing scripts also inject records into the file where the TALK= directory is
stored. These are also intended to appear in the ID= file system.
We identify the InTel HEX file used to load the FLASH memory with the first record
This record looks close to this:

ID=FL,talk_73181_2025_1.fox

This reports the file name that the audio build scripts use to save the master memory im-
age.

242

ICARC FOX Transmitters: 102-73181 KC0JFQ

The date when the script runs is next in line. Although this timestamp is collected in the
shell script, the resulting HEX file is recreated at the same time keeping the timestamp con-
sistent.
This record looks like this:

ID=FL,2025-04-20T14:00:34

Note the appearance of the timestamp matches that produced by the FOX Binary Loader.

An, as the final record inserted by the audio shell script, we note the next free page in the
FLASH device.
This record appears as:

ID=FL,SIZE,0x75700

The data value used here is provided by the audio file utility. It is the result that is passed
along to the next invocation of the audio file utility as the start address for the next audio
clip.

Externally inserted records, sequence files

As operating scripts are developed that make use of unique voice clips, there may arise a de-
pendency on a particular audio file.
This audio file records look like to this:

ID=S2,talk_73181_2025_TREK.hex
ID=S3,talk_73181_2025_TREK.hex
ID=S4,talk_73181_2025_TREK.hex

This documents the need for the talk_73181_2025_TREK.hex waveform file for correct
operation of these sequences. These records are manually included as part of the sequence
that requires a specific voice clip for proper operation.

243

ICARC FOX Transmitters: 102-73181 KC0JFQ

12.4.8 fox_binary utility: Protocol Details

Figure 12.1: Binary Protocol

This is now a working proposal for the binary packet protocol to dramatically improve the
speed with which the audio file system can be loaded.
Either the H115 WAVE command or the H56K WAVE command is used to run the bi-
nary loader. The InTel HEX format loader is retained and continues to operate as before.

After the H115 WAVE/H56K WAVE command is sent, The target (i.e. the Fox Transmit-
ter) sends back a normal (lower case) status report and then waits. The target switches to the
targeted bit rate.
In practice, the target waits around 100mS between the sys46,00* report and sending the ini-
tial acknowledge. This delay allows time for the host system to collect that status report and
then switch over to the new bit rate.
The target, now operating at the new rate, responds with the single acknowledge ACK (0x06)
character to indicate it is ready to proceed with the binary load.

244

ICARC FOX Transmitters: 102-73181 KC0JFQ

Host formats a buffer with 32 bytes of image data and the ten bytes of overhead for a total
buffer size of 42 bytes. This fixed length buffer is sent to the target. The target must validate
the checksum and the the length field, before proceeding. Assuming validity checks pass, the
image data is then sent along to the FLASH device for a page program operation.
In binary mode, the behavior of the ISR changes to deal with the packetized data, but be-
yond the ISR level, the call to retrieve a buffer remains pretty much the same. Reading a
packet in binary mode always uses a fixed length of 42 bytes to simplify the code in the in-
terrupt routine.

Once the packet is received (by the ISR) and forwarded, packet validation can begin.
If packet validation fails the target will return a NAK (0x15) which informs the host of the
damaged packet.
Error recovery from a NAK response is up to the host. The target doesn’t keep track of any-
thing from packet to packet. The host can re-transmit or continue as it sees fit.
If validation succeeds the target will return an ACK (0x06) which tells host to transmit the
next buffer.
Packet transfer and packet processing are not overlapped. The flash write routine waits for
completion (from the target memory device) before responding.

To program the FLASH device, the byte address in the packet needs to be down-shifted to
form a packet address for the programming routine (it seems to want a 32 byte record address
rather than a byte address).
This ends up doing a bit of useless shifting, but the zNEO reduces this shift operation to just
a few instructions.
The flash write routine polls the FLASH device for write complete, so the write time is closed
loop. Once write is complete, target returns an ACK (0x06) character to indicate host may
proceed with the next buffer.
This handshake proceeds as the entire audio file system is loaded.
The address field, being 32 bits, covers a 32Gb (4GB) flash device. This covers all devices
that are currently available in the 8 pin package.
At the end of the load, the host then signals the target to return to normal command process-
ing. The packet sent to accomplish this is formatted exactly like any other packet but with a
length of zero and an address of 0x00000000.
The out-of-bound length value is used to trigger the return to normal operations.
The target will respond to this buffer just like any other by sending the ACK character if
the checksum is valid or a NAK character if bad. Host will have to take appropriate recovery
action if receiving a NAK (such as a single retry).
When the target returns a NAK as result of a bad packet checksum, it will not return the
ISR to normal operation. A valid packet (with a valid checksum) is required to return to nor-
mal command processing. A simple reset or power-cycle can be used to recover from this type
of hang.
After sending the final ACK, the target will poll the UART, waiting for the transmit shift
register to clear and then switch bit rate back to the standard rate of 57,600 b/S.

Host, upon reception of the ACK character, should switch its bit rate back as well.
The target, now back to the nominal bit rate again, waits for around 100 mSec before sending
any additional traffic to allow host time to transition back to the nominal bit rate.

245

ICARC FOX Transmitters: 102-73181 KC0JFQ

The target handler is now finished processing the load and can proceed with that additional
traffic. The target will format a normal sts response and pass it back to the main loop where
the sts is upcase’d and we then see STS and then the normal RDY message.
We can then carry on with normal interactions.
Checksum calculation is simple addition across the entire buffer, from the SOH through
to and including the EOT This is to simplify the calculation at the target. The target will
accumulate a sum across the whole buffer and the checksum should be zero.

The only checking that occurs at interrupt level is the search for the initial SOH character.
When the SOH arrives, the ISR switches to loading the remaining 41 bytes of the packet.
Once the 42 bytes of the packet have arrived they are passed up to the binary loader for vali-
dation and further processing.
The binary loader directs the ISR into and out of the binary load mode. So the H115
WAVE/H56K WAVE command triggers the transition to binary loader mode and the null
record (at the end of the binary load) triggers the transition back to normal command mode.

Fixed Length Packets in binary mode?
By fixing the packet length at 32 data bytes (and 10 overhead bytes) the interrupt service
routine instruction path length is reduced.
The goal is to allow the ISR to operate up at 115,200 bits/seconds without dropping charac-
ters.
The fast path through the ISR is for buffering the body of the packet, the 41 bytes following
the SOH character. The SOH character requires special processing so the ISR checks for
additional data in the UART receive buffer register before leaving the ISR. This aims to elimi-
nate the possibility of encountering an overrun condition due to this SOH processing.
The UART seems to like 2 stop bits when operating in the binary mode. The host utility
should setup the host channel to accommodate.
The UART bit rate divisor at 115,200 is not exact. Using 2 stop bits allows receive receiver a
bit more time resynchronize.

The Binary Loader processing audio (waveform) files

Not much special happens here. Loading the audio waveforms expects 32 byte InTel HEX
records in the source file. Non HEX records are ignored. The Binary Loader adds a NULL
record at the end to transition the fox transmitter back to normal command mode.

The Binary Loader ignores non HEX-Records and will process data through to the end of the
file. Blanks lines or thost that don’t start with a colon are ignored.

Records are sent to the target Fox Transmitter as they are decoded. We assume the host sys-
tem is fast and will introduce minimal delays when decoding the InTel HEX-Records.
...
...

246

ICARC FOX Transmitters: 102-73181 KC0JFQ

The Binary Loader processing command files

There is a bit of special handling when loading command files using the binary loader (using
the -f flag with a filename). The utility inserts 4 records into an ID= file at the beginning of
the load.
They are placed into the ID= file to make displaying the a bit more convenient using the
EDMP ID= command.

An example of the four lines:

ID=FOX-Binary-Loader
V1.3

Identifies that the command text was place by the binary loader

ID=LT,2025-04-18T22:04:04 This is the date when the binary loader was run
ID=FR,FOX27_KC0JFQ.log This is the name of the command log file
ID=FR,2025-04-17T20:04:34 This is the date when the command log file was created

The second line updates every time the Binary Loader is run to load the fox transmitter.
The third line is the modification date of the command log file.

These text lines must fit within the fixed 32 byte record stored in the FRAM. Only the text
on line 3 changes in size. All the other lines have fixed text fields. Contents change but the
length does not.
The third line is taken from the command line that is used to run the Binary Loader. If the
filename exceeds 29 characters it will be truncated to fit within the 32 byte record in FRAM.
...

The Binary Protocol

Binary Protocol Command: Initiation

Activate the binary protocol with either the H56K command or the H115 command. In ei-
ther case you must supply either the PROG modifier or the WAVE modifier.
If the modifier is missing, the bit rate change will be applied but the binary protocol will not
be activated.
Note that programming FLASH memory requires a manually initiated erase operation
(HERA all) to pre-clear the flash. FLASH is a write-0 device, so it must be cleared to all
1s before you can successfully write to it.
Programming FRAM, on the other hand, does not require the erase operation. The FRAM is,
after all, just a RAM. The RAM may be written to either a 1 state of a 0 state. The binary
loader, when loading FRAM, writes a zero record after the last command record written to
the FRAM. This zero’d out record serves as an end-of-file delimiter.

247

ICARC FOX Transmitters: 102-73181 KC0JFQ

If you write a short image to the FRAM (i.e. one that is smaller than what is currently in
FRAM) you will need to clear the FRAM (ERAS dev) if you plan to add any records follow-
ing the load for the FRAM file system to behave as expected. Since we only clear one record
following the load, there could be records from a previous load that will magically appear af-
ter writing to the zero-filled record.

Binary Protocol Reply: Initiation

Target responds with a status message to indicate that the changeover to binary protocol has
started:

sts46,00* binary_loader.c* ready

Target now delays for roughly 100 milliseconds to give host time to switch to the new bit rate.
Following the delay, target sends an acknowledgment character ACK (0x06) at the selected
bit rate.
There is no requirement that we change bit rates at this point. This serves to provide a means
of operating at a higher bit rate to speed up the loading process.

Binary Protocol Command: data packet

Assuming the host correctly received the ACK, data packet flow can begin.
Host formats a fixed length packet with 32 bytes of image data. The length field is (almost)
always 32 (0x20), the exception being the last packet sent. The address field is the byte ad-
dress of the first byte of data in the packet.
The checksum is calculated across the entire packet and should give a zero result. This is an 8
bit sum with an end-off carry.

Once properly formatted, the host sends the packet to the target.

Binary Protocol Reply: data packet

Upon packet reception, target must verify the checksum. A bad checksum (i.e. non-zero)
should be indicated by sending a negative acknowledge NAK (0x15) telling the host a prob-
lem occurred. Target will then prepare for the next packet.

A valid checksum (where is adds up to zero) allows the target to proceed on to the program-
ming operation. Note that we don’t send an ACK back just yet as we don’t know if the pro-
gramming step will be successful.

A good checksum allows target to proceed with the programming operation. The PROG or
WAVE modifier has already set the flash routines up to address the correct external mem-
ory device, so here we simply call the flash write routine and then poll the external memory
device status register until the programming operation indicates success or a timeout occurs.
A timeout will result in the target sending back a NAK (0x15) reply.

248

ICARC FOX Transmitters: 102-73181 KC0JFQ

In the nominal case, we get an operation complete indication from the external memory de-
vice and then send the ACK back to the host.

This data packet transaction repeats for each packet needed to program the target memory
device.

Binary Protocol Command: end packet

After all of the programming packets have been transferred from host to target, the host will
tell the target to return to normal command operation by disabling the binary protocol.

The indicator to the target that the return to regular operation is to occur is a packet with
a length field set to zero. The address field and data field should also be set to zero to keep
things pretty. Currently the target doesn’t depend on this but the fox_binary utility does
zero out unused fields in the packet.

The checksum is calculated as expected and placed in the packet. The host may then send the
end packet on to the target and wait for a reply.

Binary Protocol Reply: end packet

The target validates the checksum, as always, and responds if an error occurs. If the checksum
is valid, target will notice the length is zero a react accordingly.

Target will acknowledge that the packet was correctly received with an ACK.

Target will then delay for a bit, again on the order of 100mSec or so, to give host time to
switch back to base bit rate as the target switches itself back to the original rate (typically
57,600 b/S).

After the delay normal command termination activities occur. The binary loader will format a
status reply string and pass it back to the main control loop.

Command Protocol

In the main control loop the status string will have the "sts" string (at the beginning of the
string) uncased to "STS" and sent out over the communications channel. This provides the
indication that the fox transmitter is now processing commands and is operating back at the
original bit rate.

The main control loop will then send out the "RDY00,00*" message to indicate readiness to
process the next command (exactly as with any other command).
...

249

ICARC FOX Transmitters: 102-73181 KC0JFQ

250

Chapter 13

fox_clock Utility

This utility is used to set the TOY clock in the fox transmitter.
This utility is written in plain-old C to run on a Linux box.
In the madness of getting setup the night before a hunt, getting all the clock set can be a bit of a
nuisance. In normal trim, the fox transmitter will send out its sign-on message (on 144.150MHz)
and then sit idle until its assigned transmit window occurs.
We can use the host computer to watch the status traffic coming out of the serial port and inject
time commands when the transmitter becomes idle. The status traffic coming from the fox trans-
mitter is explicitly engineered to allowed computer control of such things.

The program logic is pretty well fixed, all we do is set the TOY clock. We simply wait for the
RDY00 prompt from the fox transmitter and then send out a few setup commands.
The first command is a TOYC NONE to make sure we’re not providing charge current through
the DS1672. The external charge control circuit is the only current supplied to the backup bat-
tery.
We the synchronize with the system time on the host system. This synchronization waits for the
sub-seconds to reach zero before the fox_clock utility sends the time setup message to the fox
transmitter.
Following synchronization, we obtain time from the host system, truncates it (the fox transmitter
scheduler ignores days), places the time into a TIME command and sends to the target.
The host synchronization methodology assumes that the host system is lightly loaded. Under
light load, the fox_clock utility runs without interruptions to get the target clock consistently
set.

13.1 fox clock utility operation

There are only 3 arguments that the fox_clock utility will recognize.

13.1.1 -h
Help text, terse though it may be.

251

ICARC FOX Transmitters: 102-73181 KC0JFQ

13.1.2 -d
Increase debug level.
Not of much use.

13.1.3 -S USB port
Serial port nickname.
The fox_clock utility uses the halo_term library so the nicknames available are the same as the
halo_term nicknames. par

13.1.4 -l transmitter log filename
This file holds the performance data for all the fox transmitters that are updated. When loading
the clock, the utility will also list all the units that have been loaded today.
This argument, when given by itself will dump the logfile using todays date (i.e. does not expect
traffic from the fox transmitter).

13.1.5 -m label csv filename
This is the file used by the fox_label utility. When the fox_clock utility runs it collects the cur-
rent condition of the battery, which is of interest to the fox_label utility. The battery readings for
the fox_label utility are updated.
The fox_clock utility also captures the operating frequency and updates it in the label file.

label csv filename backups

The fox_clock utility does not overwrite the existing file, rather it renames it and creates a new
file. A date string is generated and appended to the filename applied in the rename operation.
An example directory listing fragment following a run of the fox_clock utility:

-rw-r--r--. 1 wtr wtr 4723 Feb 21 15:58 fox_label.csv-2025_Feb_21T16:08:40
-rw-r--r--. 1 wtr wtr 4723 Feb 21 16:08 fox_label.csv

The old file has the -2025_Feb_21T16:08:40 stuck onto the end of the filename and then we
simply create a new file (fox_label.csv).

13.2 Normal Use
Invoke as follows:

./fox_clock -SFOX2X -lfoxlog.csv -mfox_label.csv

The utility then waits for traffic from the fox transmitter.

So, connect up the target, run ./fox_clock -SFOX2X and then turn the target fox transmitter
on.
I find it useful to have a 50Ω load on the transmitter and an H.T. set to 144.150MHz. You hear
the sign-on message and then the fox_clock utility sets the clock and prints a status report.

252

ICARC FOX Transmitters: 102-73181 KC0JFQ

A logging facility leaves a trace of the information gathered from the fox transmitter when the
time is updated. The battery voltage, in particular, can be reviewed after updating all the trans-
mitters to make sure there is sufficient battery for the hunt.
You can also review the sequence that will be run during the hunt. Check that it what you ex-
pect (typically S0=).

Sample Log File:

Listing 13.1: foxlog_1.txt
12025−May−22T21 : 1 3 : 2 1 , " V4 . 0 4 " , "W0JV" , "FOX27" , 1 4 4 . 3 2 5 , " S0 " ,8.67 −V,30−mA,8.35 −V,120 −mA,−5Hrs , Off : 4
22025−May−22T21 : 1 4 : 0 7 , " V4 . 0 4 " , "W0JV" , "FOX25" , 1 4 4 . 2 2 5 , " S6 " ,8.92 −V,38−mA,8.62 −V,122 −mA,−5Hrs , Off : 4
32025−May−22T21 : 1 4 : 4 9 , " V4 . 0 4 " , "W0JV" , "FOX29" , 1 4 4 . 3 2 5 , " S0 " ,7.83 −V,42−mA,7.35 −V,146 −mA,−5Hrs , Off : 5
42025−May−25T15 : 3 3 : 3 7 , " V4 . 0 4 " , "W0JV" , "FOX21" , 1 4 4 . 2 2 5 , " S6 " ,8.02 −V,24−mA,7.60 −V,121 −mA,−5Hrs , Off : 6
52025−May−25T16 : 2 8 : 0 9 , " V4 . 0 4 " , "W0JV" , "FOX25" , 1 4 4 . 2 2 5 , " S6 " ,8.90 −V,37−mA,8.61 −V,122 −mA,−5Hrs , Off : 4

This is data stored in the foxlog.csv file. The collected data is then used by the label utility (see
section 16.9 on page 290).

13.3 Extracted Reports

Sample Report:

Listing 13.2: foxlog_2.txt
1S/W Vers ion : "V4 . 0 4 "
2CALLSIGN: "W0JV"
3NICKNAME: "FOX30"
4Frequency : " 1 4 4 . 3 2 5 "
5RUN S l o t : " S0 "
6System Off : "Now:68338D3A" " Off : 6 "
7System Time : " Sys :68338 D58" "TOY:68338 D58" Epoc : " 6 8 4 0 0 " −5 Hrs
8I d l e Power : 7.89 −V 47−mA
9Active Power : 7.28 −V 150−mA
10fox_clock . c main /1652 Decode Last D e t a i l Record
11fox_clock . c main /1660 CMD: s o r t −t " , " −k4 , 4 −k1 , 1 < f o x l o g . csv > s o r t e d _ f o x l o g . csv
12fox_clock . c main /1664 Report Todays Loads
13fox_clock . c Todays_Loads /1098 "FOX21 " : 2025−May−25T15 : 3 3 : 3 7 , " V4 . 0 4 " , "W0JV" , " FOX21" , 1 4 4 . 2 2 5 , " S6

↪→ " ,8.02 −V,24−mA,7.60 −V,121 −mA,−5Hrs , Off : 6
14fox_clock . c Todays_Loads /1098 "FOX25 " : 2025−May−25T16 : 2 8 : 0 9 , " V4 . 0 4 " , "W0JV" , " FOX25" , 1 4 4 . 2 2 5 , " S6

↪→ " ,8.90 −V,37−mA,8.61 −V,122 −mA,−5Hrs , Off : 4
15fox_clock . c Todays_Loads /1098 "FOX30 " : 2025−May−25T16 : 3 6 : 2 5 , " V4 . 0 4 " , "W0JV" , " FOX30" , 1 4 4 . 3 2 5 , " S0

↪→ " ,7.89 −V,47−mA,7.28 −V,150 −mA,−5Hrs , Off : 6
16fox_clock . c main /1670 CMD: rm s o r t e d _ f o x l o g . csv
17fox_clock . c main /1681 UPDATE Labels : f o x _ l a b e l . csv
18fox_clock . c Last_Write /1296 CMD: mv f o x _ l a b e l . csv f o x _ l a b e l . csv −2025_May_25T16 : 3 6 : 2 5

This is a sample report produced by the fox_clock utility.
This is an update on FOX30 as indicated by the NICKNAME:"FOX30" detail line. We can ver-
ify that the callsign (in this case W0JV) is set and we will operate at 144.325MHz (as intended).
The TOY clock offset is captured as the Fox Transmitter is started. The clock utility records
local time and the time from the second TIME command in the ANN= sequence. These two
times are differe4nced and reported on the System Off: "Now: 68338D3A" "Off:6 " line. Here we
see that the Fox Transmitter was ahead by 6 seconds "Off:6".

Battery levels are adequate to operate the hunt, the active power is above 7.2V (Active Power:
7.71-V 149-mA).

253

ICARC FOX Transmitters: 102-73181 KC0JFQ

After acquiring the data from the fox transmitter, the log file is sorted by nickname and date to
be listed in order. Only the details record from the current day are printed. In this example 4 of
the set of 12 transmitters have been updated so far.
Current draw seems a bit high, showing 54mA when idle and drawing 150mA when transmitting.
Finally, notice that we are operating CDT as indicated by the -5Hrs at the end of the line. This
is the Epoch field from the fox transmitter. This Epoch field must be set correctly for the STAR
command to operate correctly.

13.3.1 Handler_TIME
Data from the TOY clock used to verify things loaded correctly.
We use the second occurrence of this command to determine the TOY clock drift.

13.3.2 Handler_EPOC
This reports the current time-zone offset setting.

13.3.3 Handler_BATR
This is the voltage and current at the time the command was issued. If your sign-on sequence is
properly configured, it will have a battery report before the transmitters is turned on as well as
when the unit is transmitting.

13.3.4 Handler_CALL
The fox transmitter callsign.

13.3.5 Handler_NAME
The fox transmitter nickname.

13.3.6 Handler_FREQ
The fox transmitter operating frequency.
This will appear several times in the ANN= sequence, so the last one seen is reported.
This last frequency should be the operating frequency (not the announce frequency).

13.3.7 Handler_RUN
The fox transmitter active sequence.
The last (or very nearly the last) command in the ANN= sequence should activate the schedule
the transmitter will operate on.
Nominally, our operating sequence would be the S0= sequence. If that is expected, and some-
thing else shows up, you have the opportunity to correct this before being embarrassed at the
hunt.

254

ICARC FOX Transmitters: 102-73181 KC0JFQ

13.4 Clock setting shell script
Shell script used by the author to automate clock setting operations.
This script allows for quickly updating all units and keeping track of the data they produce.

#!/usr/bin/bash
#
#
-D "Todays Date"
#
FOX_CLOCK=/home/wtr/Radio/halo_term/fox_clock
SERIAL=FOX2X
#
echo ready
echo "**"
echo "********************************* FIRST UNIT *********************************"
echo "**"
while :

do
$FOX_CLOCK -S$SERIAL -l foxlog.csv -mfox_label.csv
echo "**"
echo "********************************* SWAP UNITS *********************************"
echo "**"

done

Using a simple looping construct in the script allows you to plug in a fox transmitter, turn it on,
and wait for the announce message to be sent. After the announce traffic is sent, the fox_clock
sets the clock and updates the foxlog.csv and the fox_label.csv files.
We then wait for another to be plugged in and switched on.

The fox label utility should be run after the fox clock utility. This has the latest battery condi-
tion available when the fox_label_A_chk.* files are produced.

13.5 Reviewing Battery Condition
After setting time in all units, you can review the collected by running the fox_clock utility with-
out the USB port argument.
Invoke as follows:

./fox_clock -lfoxlog.csv -mfox_label.csv

Get something like this:
fox_clock.c main/1373 Restore Last Detail Record from "foxlog.csv" 37 records
fox_clock.c main/1384 Decode Last Detail Record
fox_clock.c main/1392 CMD: sort -t"," -k4,4 -k1,1 < foxlog.csv > sorted_foxlog.csv
fox_clock.c main/1396 Report Todays Loads
fox_clock.c Todays_Loads/ 863 "FOX24": 2025-Feb-21T09:12:29,"V3.90","W0JV","FOX24",144.225,"S6",8.63-V,34-mA,8.36-V,116-mA,-5Hrs
fox_clock.c Todays_Loads/ 863 "FOX24": 2025-Feb-21T15:17:09,"V3.90","W0JV","FOX24",144.225,"S6",8.69-V,34-mA,8.39-V,115-mA,-5Hrs
fox_clock.c Todays_Loads/ 863 "FOX25": 2025-Feb-21T09:24:09,"V3.90","W0JV","FOX25",144.225,"S6",7.79-V,41-mA,7.17-V,141-mA,-5Hrs,***Battery***
fox_clock.c Todays_Loads/ 863 "FOX25": 2025-Feb-21T15:28:41,"V3.90","W0JV","FOX25",144.225,"S6",7.87-V,41-mA,7.22-V,140-mA,-5Hrs
fox_clock.c Todays_Loads/ 863 "FOX26": 2025-Feb-21T09:06:23,"V3.90","W0JV","FOX26",144.225,"S6",8.73-V,29-mA,8.45-V,115-mA,-5Hrs
fox_clock.c main/1402 CMD: rm sorted_foxlog.csv
fox_clock.c main/1413 UPDATE Labels: fox_label.csv
fox_clock.c Last_Write/1050 CMD: mv fox_label.csv fox_label.csv-2025_Feb_21T16:08:40

255

ICARC FOX Transmitters: 102-73181 KC0JFQ

This will update the fox_label.csv file with the data on the last line of the foxlog.csv file, which
may be redundant. It will nonetheless produce a report of the updates performed that day (ear-
lier detail lines are ignored).
Any units with a low battery voltage (like FOX25 which is below 7.2V when transmitting in this
example) are noted in the report. This gives you the opportunity to replace the battery before
the hunt so you don’t drop a transmitter due to an exhausted battery.

13.6 Time from GPS NMEA and PPS

The 102-73181-10 board could, in theory, accept a NMEA sentence stream from a GPS for set-
ting time. In practice, however, there is no practical means of getting the PPS signal into the Fox
Transmitter.
Without the PPS signal and assuming the GPS is configured such that the NMEA sentence
strings are delivered with a consistent offset from the start of a second (i.e. always in the same
position, relative to the PPS signal) it should be possible to load the TOY clock.
Alas, this doesn’t appear to be the case with the GPS18 used by the author. The GPS was con-
figured to emit only the $GPGSA, $GPGSA and $GPGSA sentences.

256

Chapter 14

zNEO Programming Hardware
and Utility

This utility is used to load the software image into the zNEO in the fox transmitter.
This utility is written in plain-old C to run on a Linux box. It makes use of the 102-73220-23 and
102-73220-33 boards to provide the programming connection into the target system.

This utility came about to address an issue with using the ZiLOG ethernet smart cable program-
mer. Something occurred with an update to Fedora40 that broke the ZENETSC0100ZACG
device used by the author.

The replacement uses a standard FTDIchip USB UART device along with a small interface board
to access the debug/programming port on the zNEO.

257

ICARC FOX Transmitters: 102-73181 KC0JFQ

Help output from programming software:
./zNEO_P (V0.0/V2.10)

ZiLOG ZNEO Programmer

The following command line switches are recgonized:

-h help file, abbreviated
-H help file, include config file and device file list

-r Reset Target (and exit)
-e erase only (and exit)
-p skip erase
-f <freq> define target crystal frequency (default: 20.000 MHz)

-d scan target flash to _pre.hex onnly
-1 scan target flash to _pre.hex BEFORE programming
-2 scan target flash to _post.hex AFTER programming

-x <file> input hex file (filetype, not supplied, must be .hex)
-X <file.hex> reformatted hex file (you must supplt the .hex suffix!)
-V Verify only
-l <file> append to log file (include timetage on each line)

-S <nickname> Select device by name
EZ3PGM 38400
EZ5PGM 57600
EZ1PGM 115200
EZ2PGM 230400
EZ4PGM 460800
EZ8PGM 500000

Typical use:
./zNEO_P -SEZ5PGM -xfox_73181

The serial device selection is through the -SEZ5PGM argument. Note that this particular de-
vice operates the 57,600 bit/second rate to stay well within what the zNEO will tolerate. All of
the listed bit rates should be within the capability of the zNEO On Chip Debugger. In practice,
operation above 115,200 may not allow enough time for flash memory programming inside the
zNEO. The ZENETSC0100 programmer that this hardware replaces was operating at around
125,000 bits/second.
The basic processing time for programming a full (128K) device (erase, program, and verify), is
a bit over 90 seconds. Page size is limited to 32 bytes during programming and expanded to 256
bytes during verify. Adding the -1 adds about 30 seconds for the pre-read operation.
The hex file selection is through the -xfox_73181 argument. The filetype of .hex is forced (the
.hex must not appear). The device memory image can be saved both before and after program-
ming using the -1 and -2 flags.
The hex file decoder in the utility is white-space insensitive. It will accept expanded hex files
that have white-space embedded within the record as well as text appended to each line. The
output produced when using the -1 and -2 flags will be correctly processed.

258

ICARC FOX Transmitters: 102-73181 KC0JFQ

The pre and post .hex files are named based on the -x argument. The input filename is simjply
the supplied argument with the .hex appended.
The -1 will save a file collected before the device is erased. It is named by appending _be-
fore.hex to the supplied filename.
The -2 will save a file collected after the device is programmed. It is named by appending _af-
ter.hex to the supplied filename. Note that this image is collected from the target after pro-
gramming to verify that the device was successfully programmed.

The -X is used to produce an annotated hex file. This simply spreads out the hex record to make
manual inspection a bit easier. There is also a text dump appended to the hex data.
The ZiLOG ZNEO Programmer software will directly deal with this output. It removes
whitespace as the line of text is read. Extra characters after the checksum field are ignored.

14.1 Single Channel UART
This is the base board that holds the USB UART.

Figure 14.1: Single Channel UART

U1 is the USB UART device that provides a connection to the host system.
For our programming application the RS485 interface U2..U4 is not populated. We use this
board as a place for the FT230X to live and a mounting point for the programming board.
The circuit provides visual indicators (LEDs) to allow monitoring activity.

259

ICARC FOX Transmitters: 102-73181 KC0JFQ

This is the base board connector to the programming board.

Figure 14.2: base board to programming board

This board was originally designed as a RS485 interface for a sensor network. In addition to
the USB interface the board will also accommodate a Raspberry PI ZERO in place of the USB
UART.
The Raspberry PI ZERO connector provides the interface to the programming adaptor board.
The R25/R26 resistor pair provides for swapping the TxD and RxD lines to the Raspberry PI
connector should that be necessary.

260

ICARC FOX Transmitters: 102-73181 KC0JFQ

14.2 ZiLOG eZ8 Programming Adapter
This is the full-duplex (FTDIchip device) to half-duplex (zNEO) interface drawing:

Figure 14.3: eZ8 Adapter

The programming board provides the interface between the full-duplex UART (TxD and RxD
data) and the half-duplex interface to the eZ8/zNEO target. The eZ8/zNEO interface is open
drain to allow either side to drive the data bus.
To improve speed, data from host(J1) to target(J6) is buffered using a tri-state gate(U5) that is
enabled when transmitting. The use of a push-pull gate improves rise time for data being sent to
the target.
The 74LVC1G126 device is pin compatible with a 74LVC1G07 open drain driver should this
prove useful. One would epect to control the enable pin of U5 using the TXDEN net as the
FT230X will set the TXDEN bit when it transmits and clear the bit when not transmitting.

The Recovery Oscillator shown in the lower left corner is there to provide a clock to a board
where the zNEO internal oscillator configurtion has been corrupted or improperly programmed.
Pin 2 can be used by itself to effect the recovery operation by connecting to the XIN pin on the
zNEO (LQFP64 pin 64). Power and ground appear on the connector (J3) should it become nec-
essary for either of these signals to be used.

It should be possible to use a Raspberry PI ZERO to drive this board. The R25/R26 resistor pair
is also present on this board to allow TxD and RxD to be correctly routes.

261

ICARC FOX Transmitters: 102-73181 KC0JFQ

The 102-73220-33 board is not mechanically well suited for use with the Raspberry PI ZERO as
it extends outside the edges of the Raspberry PI ZERO. It should, none-the-less be electrically
compatible.
Power to the Raspberry PI ZERO may present a problem. A regulated 5V supply would need to
be connected to either the Raspberry PI ZERO has a microUSB conenctor for providing power
which may be used to also power the programming board. There are also a pair of pads on the
5V and GND nets on the programming board that may be used to feed the Raspberry PI ZERO.

14.3 Four Channel UART

This is a proposed UART motherboard with 4 identical channels that fits in our Hammond
1599E box. This board is intended to condense the connections required to debug the Fox Trans-
mitter to a single board.
One channel to connect to the zNEO UART-0, a second channel to connect to the zNEO UART-
1, and the third channel to program the zNEO,.

Figure 14.4: FTDIchip FT4232

This makes use of the FTDIchip FT4232 quad UART to provide 4 serial channels in a single 64
ping flat-pack.

262

ICARC FOX Transmitters: 102-73181 KC0JFQ

The motherboard has 4 plug-in positions for daughtercards to provide the individual electrical
interface.
Any combination of daughterboards may be installed on the motherboard.

Figure 14.5: FTDIchip FT4232 channel

Each of the other three channels are wired identical to the first.
Shown here is the connections from the FT4232 to the daughtercard.

14.3.1 UART 3.5mm Channel Card

This is the logic-level UART interface used by the Fox Transmitter.

Figure 14.6: 3.5mm serial channel

This is used to connect to the primary 3.5mm connector on the Fox Transmitter to load FRAM
and FLASH. It is also used to connect to the other serial channel through the 102-73181-24
daughtercard.

263

ICARC FOX Transmitters: 102-73181 KC0JFQ

14.3.2 UART 3.5mm Isolated Channel Card

This logic-level UART interface is also available with isolation.

Figure 14.7: 3.5mm serial channel, isolated

This provides electrical isolation between the host computer (through the USB cable) and the
Fox Transmitter.
Optical isolators are inserted between the motherboard UART and the level shifters. The indi-
cated opto-isolator device has very low drive requirements to reduce the current load presented
by the LED in U1. The ACPL-024 is a high speed isolator that should have no difficulty running
at the 115,200 b/S rate used for fast loading the FRAM/FLASH memory.

Figure 14.8: Isolated 5V supply

The isolated power is supplied using a MAX253 driver and a PH9185.034NL isolation trans-
former. This power convertor runs off of the 5V rail (it has higher current capability than the
3.3V rail). The power convertor stops running when the FT4232 is in shutdown (follow the
PWREN* net).

264

ICARC FOX Transmitters: 102-73181 KC0JFQ

14.3.3 ZiLOG eZ8 Programming Channel Card

This simply duplicates the programming channel from the eZ8 Programming Adapter in section
14.2 on page 261.

Figure 14.9: eZ8 Programming Card

The recovery oscillator (section 14.2) is removed owing to space constraints.
This interface should behave identically to the eZ8 Programmer above.

14.4 FTDIchip EEPROM programming
All of the sub-projects presented here make use of FTDIchip USB-UARTS. The EEPROM typ-
ically will need to be loaded with configuration information spefific to the application where the
chip is used.
We will first use the ftdi_eeprom utility under Linux to extract the current data in the EEP-
ROM, saving it to a .conf file. This .conf file can then be modified to suit your needs.
We can then use the ftdi_eeprom utility under Linux to program the EEPROM in the FTDI
UART with new data.

Vendor_ID and Product_ID
Always use the values provided in the device before it is programmed. We use the stan-
dard serial drivers so there is no good reason to change these values.

Serial Numbers
Serial numbers must be unique. There is a numbering convention used by the author to
serialise all FTDI devices. In the examples below, the last 4 characters of the serial num-
ber are sequential across all devices produced by the author. The initial characters serve to
identify the type of device and are not detailed here.

265

ICARC FOX Transmitters: 102-73181 KC0JFQ

Max Power
All of these device should fit comfortably within the power constraints imposed by the
USB standard.
You may consult the datasheets to estimate the maximum power that should be required
by the various projects.

14.4.1 EEPROM, commands

The command used by the author to read the EEPROM in the USB-UART device.

#!/usr/bin/bash
sudo \

ftdi_eeprom \
--verbose \
--device i:0x0403:0x6001 \
--read-eeprom \
$1.conf

The command used by the author to write the EEPROM in the USB-UART device.

#!/usr/bin/bash
sudo \

ftdi_eeprom \
--verbose \
--device i:0x0403:0x6001 \
--flash-eeprom \
$1.conf

Configurable string values.

Decode Macro Key Name Description
CFG_STR manufacturer String we provide
CFG_STR product String we provide
CFG_STR serial String we provide (unique!)
CFG_STR user_data_file
CFG_STR filename

Configurable integer values.

Decode Macro Key Name Description
CFG_INT vendor_id DO NOT ALTER
CFG_INT product_id DO NOT ALTER
CFG_INT default_pid DO NOT ALTER
CFG_INT max_power calculate this value
CFG_INT eeprom_type
CFG_INT release_number
CFG_INT usb_version DO NOT ALTER
CFG_INT user_data_addr

266

ICARC FOX Transmitters: 102-73181 KC0JFQ

Most of the devices supplied by FTDIchip have pins that can be configured by the EEPROM to
route useful signals to these pins.
Consult the datasheet to determine which of the cbus groups are supported by the device. You
can then configure them as needed. Reading the existing EEPROM usually will give you clues as
to which cbus group to choose from.
In the way of example, the FT230X device lists only 4 cbus pins, so pick from the cbusx group.
The FT232R has 5 cbus pins so here we use the cbus group. And finally, the FT232H, with 10
cbus pins, will use the cbush group.

Alternate features for legacy FT232R devices (USB port on the Fox Transmitter).

Decode Macro Key Name Description
CFG_INT_CB cbus0
CFG_INT_CB cbus1
CFG_INT_CB cbus2
CFG_INT_CB cbus3
CFG_INT_CB cbus4

CBUS Options Description
TXDEN Output Driver Enable (RS485)
PWREN USB configured, USB suspend: high
TXLED TX activity status LED
RXLED RX activity status LED
TXRXLED TX & RX activity status LED
SLEEP USB suspend
CLK48 48 MHz clock
CLK24 24 MHz clock
CLK12 12 MHz clock
CLK6 6 MHz clock
IOMODE IO port for CBUS bit bang mode
BB_WR Synchronous Bit Bang Write strobe (FT232R and FT-X only)
BB_RD Synchronous Bit Bang Read strobe (FT232R and FT-X only)

Alternate features for FT232H/FT2232H/FT4232H devices (used on the 102-73226-B boards).

Decode Macro Key Name Description
CFG_INT_CB cbush0
CFG_INT_CB cbush1
CFG_INT_CB cbush2
CFG_INT_CB cbush3
CFG_INT_CB cbush4
CFG_INT_CB cbush5
CFG_INT_CB cbush6
CFG_INT_CB cbush7
CFG_INT_CB cbush8
CFG_INT_CB cbush9

267

ICARC FOX Transmitters: 102-73181 KC0JFQ

CBUS-H Options Description
TRISTATE IO Pad is tri-stated
TXLED TX activity status LED
RXLED RX activity status LED
TXRXLED TX & RX activity status LED
PWREN USB configured, USB suspend: high
SLEEP USB suspend
DRIVE_0 Drive constant 0 (FT232H and FT-X only)
DRIVE1 Drive constant 1 (FT232H and FT-X only)
IOMODE IO port for CBUS bit bang mode
TXDEN Output Driver Enable (RS485)
CLK30 30 MHz clock
CLK15 15 MHz clock
CLK7_5 7.5 MHz clock

Alternate features for FT230X devices (used on the 102-73220-20 and 102-73220-23 boards).

Decode Macro Key Name Description
CFG_INT_CB cbusx0
CFG_INT_CB cbusx1
CFG_INT_CB cbusx2
CFG_INT_CB cbusx3

268

ICARC FOX Transmitters: 102-73181 KC0JFQ

CBUS-X Options Description
TRISTATE IO Pad is tri-stated
TXLED TX activity status LED
RXLED RX activity status LED
TXRXLED TX & RX activity status LED
PWREN USB configured, USB suspend: high
SLEEP USB suspend
DRIVE_0 Drive constant 0 (FT232H and FT-X only)
DRIVE1 Drive constant 1 (FT232H and FT-X only)
IOMODE IO port for CBUS bit bang mode
TXDEN Output Driver Enable (RS485)
CLK24 24 MHz clock
CLK12 12 MHz clock
CLK6 6 MHz clock
BAT_DETECT Battery Charger Detect (FT-X only)
BAT_DETECT_NEG Inverse signal of BAT_DETECT (FT-X only)
I2C_TXE Transmit buffer empty (FT-X only)
I2C_RXF Receive buffer full (FT-X only)
VBUS_SENSE Detect when VBUS is present via the appropriate AC IO pad

(FT-X only)
BB_WR Synchronous Bit Bang Write strobe (FT232R and FT-X

only)
BB_RD Synchronous Bit Bang Read strobe (FT232R and FT-X

only)
TIME_STAMP Toggle signal each time a USB SOF is received (FT-X only)
AWAKE Do not suspend when unplugged/disconnect/suspsend (FT-X

only)

Configure channel type.

Decode Macro Key Name Description
CFG_INT_CB cha_type
CFG_INT_CB chb_type

Channel Type Description
UART
FIFO
OPTO
CPU
FT1284

Configure drive strength.

Decode Macro Key Name Description
CFG_INT_CB group0_drive

269

ICARC FOX Transmitters: 102-73181 KC0JFQ

Group-0 Drive Description
4MA
8MA
12MA
16MA

Configurable Feature Enable Flags.

Decode Macro Key Name Description
CFG_BOOL change_usb_version
CFG_BOOL flash_raw
CFG_BOOL high_current
CFG_BOOL in_is_isochronous
CFG_BOOL out_is_isochronous
CFG_BOOL remote_wakeup
CFG_BOOL self_powered true powered external to USB

false powered by USB
CFG_BOOL suspend_pull_downs
CFG_BOOL use_serial true to use the serial number string

Configurable Feature Enable Flags.

Decode Macro Key Name Description
CFG_BOOL cha_rs485 TRUE for TXDEN*
CFG_BOOL chb_rs485 TRUE for TXDEN*
CFG_BOOL chc_rs485 TRUE for TXDEN*
CFG_BOOL chd_rs485 TRUE for TXDEN*
CFG_BOOL cha_vcp TRUE for virtual com-port driver
CFG_BOOL chb_vcp TRUE for virtual com-port driver
CFG_BOOL chc_vcp TRUE for virtual com-port driver
CFG_BOOL chd_vcp TRUE for virtual com-port driver

Configurable pin polarity flags.

Decode Macro Key Name Description
CFG_BOOL invert_cts
CFG_BOOL invert_dcd
CFG_BOOL invert_dsr
CFG_BOOL invert_dtr
CFG_BOOL invert_ri
CFG_BOOL invert_rts
CFG_BOOL invert_rxd
CFG_BOOL invert_txd

270

ICARC FOX Transmitters: 102-73181 KC0JFQ

14.4.2 EEPROM, FOX17.conf
Configuration for the FOX17 Fox Transmitter. This is 102-73181-0 hardware where the only com-
mand path is through the on-board FT232 UART.

vendor_id=0x403
product_id=0x6001
max_power=24
manufacturer="KC0JFQ"
product="KC0JFQ_FOX_V3"
serial="2078-0-0114"
filename="FOX17.bin"
self_powered=false
use_serial=true

The self_powered=false line indicates that the device is accepting 5V power from the USB bus.
The USB-UART on the Fox Transmitter is powered through the USB bus so it remains active
when the Fox Transmitter is not powered. This keeps the USB devices from dropping off the bus
when powwer is removed.

14.4.3 EEPROM, EZ8PGM.conf
Configuration for the eZ8 programmer.

vendor_id=0x403
product_id=0x6015
max_power=400
manufacturer="KC0JFQ"
product="EZ8PGM"
serial="42B3-0-0118"
filename="EZ8PGM.bin"
self_powered=false
use_serial=true
#
cbusx0="TXDEN"
cbusx1="IOMODE"
cbusx2="RXLED"
cbusx3="TXLED"

The eZ8 programmer is intended to obtain power from the USB bus as the power requirements
for the programmer are minimal.
We do advertise a higher power level than we actually use.

271

ICARC FOX Transmitters: 102-73181 KC0JFQ

14.4.4 EEPROM, prototype
Configuration for the some other prototype.

vendor_id=0x403
product_id=??
max_power=??
manufacturer="KC0JFQ"
product="produce name"
serial="serial number"
filename="prototype.bin"
self_powered=false
use_serial=true

Set the self_powered= line as needed.
Set the serial= line to a unique value so it can be cleanly discovered and not conflict.

14.4.5 EEPROM, radio 25.conf
Configuration for the KC0JFQ radio interface. This project uses the FT4232 device.

filename=radio_25.bin
vendor_id=0x0403
product_id=0x6011
eeprom_type=0x66
manufacturer="Perf Proc"
product="KC0JFQ Radio I/F"
serial="2078-0-0025"
use_serial=true
max_power=0
self_powered=true
remote_wakeup=false
cha_type=UART
chb_type=UART
cha_rs485=false
chb_rs485=false
chc_rs485=false
chd_rs485=false
cha_vcp=true
chb_vcp=true
chc_vcp=true
chd_vcp=true

The USB-UART is powered externally (not by the USB bus) so the serial= reflects thi use.

14.4.6 EEPROM,
Configuration for the .

ver

272

Chapter 15

Audio File Utility

The audio utility program, audio_util, is used to gather all of the audio clips that are to be
loaded into the fox transmitter together into a single InTel HEX file that can be loaded into the
fox transmitter FRAM.
The fox transmitter recognizes the record format on an InTel HEX file. When an InTel HEX ar-
rives through the command port (i.e. the USB port) it is decoded and saved to the FRAM.
The audio utility program allocates space starting at the top of FRAM and works toward the
bottom of the device where the Configuration Commands are located. As the audio utility pro-
gram is independent of the load utility, space allocation is manual. You must insure that the au-
dio file system does not overlap with the Configuration Command File System.

15.1 Input File

The input file is a standard WAV file.
It must be PCM data, 8 bits wide, unsigned, at 4,000 or 5,000 samples/second.

15.2 Output File

The output of the Audio File Utility is an InTel HEX file along with updated command-line
arguments for use with the next invocation of the Audio File Utility.
Although there are flags to eliminate the RIFF/WAVE header from the input wave file, the
V3.27 revision of the fox transmitter software uses the RIFF/WAVE header to determine the
sample count and sample rate of the audio clip.

15.2.1 Audio Utility command line (typical)
This is the command used to render an audio fragment into a loadable hex file. This is repeated
for each utterance that is to be loaded into the Fox Transmitter.

sox -v 0.90 voice_01.wav --rate 4000 --bits 8 R4K_voice_01.wav
mv R4K_voice_01.wav voice_01.r4k
audio_util -m(0,0) -b -a 0x0000 -H -i voice_01.r4k -o voice_01.hex

273

ICARC FOX Transmitters: 102-73181 KC0JFQ

We then use a shell script to iterate over all the files needed by the Fox Transmitter.
In this fragment, the FILE=voice_01 assignment is repeated for each audio clip (utterance).

SOX=/usr/bin/sox
MV=/usr/bin/mv
AUDIO=/home/wtr/Radio/halo_term/audio_util
ADDR="-m(0,0) -b -a 0x0000"
FILE=voice_01

Down in the loop, we update the FILE variable as we iterate over the list of files. The SOX util-
ity resamples the input to our needed 4KHz 8-bit mono file. We then rename ($MV) the file to
differentiate the .wav files from the resampled files.
The, as we run the audio utility, we save the report (that is produced at the end) that tells us
where to start the next audio clip.

$SOX -v $VOLU $FILE.wav --rate 4000 --bits 8 R4K_$FILE.wav
$MV R4K_$FILE.wav $FILE.r4k
ADDR=$($AUDIO $ADDR -H -i $FILE.r4k -o $FILE.hex)

As we cycle through the list of files, updating the FILE variable, we produce a group of hex files
with each having a load address that follows the previous file.
At the end, we concatenate all the .hex files into one to be loaded using the fox_simple utility.

Embedded in the master .hex file are the commands needed to form the TALK Directory. We use
grep to extract them and remove the leading REM- command. This results in a TALK record
for each utterance in the master .hex file.
Although we could leave the TALK Directory embedded in the .hex file, the talk directory needs
to be loaded following an erase of the FRAM. The FLASH, once loaded, we prefer to simply
leave it alone since it takes so long to load.

15.2.2 Audio Utility command line arguments

-H dump RIFF/WAV header

This flag causes a dump of the RIFF/WAVE header to be included in the .hex file.
The fox_simple utility and the Fox Transmitter ignore this content. This means, of course, it is
there for your inspection.

-i <input file>

input file name
defaults to stdin
use this name for output with ".hex"
unless "-o" overrides

This should be obvious.
See the above example.

274

ICARC FOX Transmitters: 102-73181 KC0JFQ

-o <output file>

output file name
defaults to stdout or input.hex

This should be obvious.
See the above example.

-a <address> in hexadecimal!

starting address in hexfile
defaults to 0x0000

This argument, the starting address of the hex data, will be unique for each file that makes up
the master file.
Each utterance is stacked, one after the other, in the FLASH memory.

-d <count> in decimal

strip ’count’ header bytes
defaults to zero

Header delete count.
All version of the Fox Transmitter software you will encounter knows about the RIFF/WAVE
header in a wav file. The Fox Transmitter software obtains output parameters from the RIF-
F/WAVE header.
This allowed for removing the RIFF/WAVE header for early version of the Fox Transmitter Soft-
ware.

-D <count> in decimal

offset ’count’ header bytes
defaults to zero (leaves RIFF header intact)

This is part of the same accommodation from above.
This offsets the address in the TALK Directory entry by the supplied value.

-s <sample rate>

audio sampling rate
defaults to "4K"

This is more of the accommodation from above.
When a RIFF/WAVE header is not present, the sample rate needs to appear in the TALK Direc-
tory entry. This provides the means to supply that for non standard files.

-b "batch mode"

suppress all output other than
the address of the next file

Suppress all reporting.
The only output from the program are properly formatted command line flags and arguments.
This, of course, enables batch processing in a shell script (see example above).

275

ICARC FOX Transmitters: 102-73181 KC0JFQ

-m <(min,max)>

emit min max values found in file
The gives us an indication of the volume of the utterance. Since this is an 8-bit unsigned sample
stream, minimum value is 0 and the maximum is 255.

-c HEX File cluster size (128)

MUST be even power of 2!
The parameter determines the start address that will be delivered to the next file. Typical value
is 32 to align with the record size of the generated .hex file. This makes it easier to view the
header data.

15.3 Downloading the audio image
Downloading into the Fox Transmitter may be accomplished using either the fox_simple util-
ity or the fox_binary utility. The audio file we will download is plain text (in the form of In-
Tel HEX Records) that can bed fed to the command decoder in the Fox Transmitter through the
control port (i.e. the 3.5mm jack). The fox_simple utility streamlines the process of feeding
command lists and hex files to the target Fox Transmitter.

We can signifigantly speed up the process by using the fox_binary utility (the preferred
method). The fox_binary utility takes the same InTel HEX file and triggers the binary loader
in the Fox Transmitter.
The fox_binary utility does not share! You must skill off any copies of halo_term that is
monitoring the Fox Transmitter command port. If halo_term is left running, the fox_binary
utility will switch the Fox Transmitter into binary mode but handshake characters will be con-
sumed by halo_term which will hang things up.
An effective way to avoid interference is to run fox_binary and halo_term from one terminal
session. The fox_binary utility will cause the Fox Transmitter to revert to accepting commands
at the standard bit rate and then exit. On the other hand, halo_term must be aborted manu-
ally (use control-C).
See the desctiption of using the fox_binary utility in section 12.4 on page 239.

Progress of the fox_simple utility can be monitored using the halo_term utility, it will share
the USB connection with the fox_simple utility. The halo_term screen will display the status
response from the target fox station as fox_simple sends hex records.
The compiled InTel HEX file may be directly loaded into the waveform memory (FLASH) using
the fox_simple utility:

/home/wtr/Radio/halo_term/fox_simple \
-SFOX2X \
-c100 \
-t10 \
-f/home/wtr/WAV/fox_73181_r4k.hex

-S flag
This selects the USB port through which the download operation will occur. A list of key-
words may be found in the halo_term utility by using the "-H" flag.

276

ICARC FOX Transmitters: 102-73181 KC0JFQ

-c flag
Sets the inter-line delay (in milliseconds). This is used to speed up the download, although
it is still painfully slow.
A 10mS delay works on all the fox transmitters produced by the author.z

-t flag
Time truncation flag selects the number of days the timetag is truncated to. This simply
reduces the size of the time field sent to the target at the start of the download.

-f flag
File selection flag. This will be the InTel HEX file that is to be downloaded.
There are directory records embedded in the InTel HEX file produced by the audio utility,
but they are prefaced by a REMARK command so they aren’t loaded into FRAM.
Use grep to extract the TALK records:

grep TALK fox_73181_r4k.hex

You end up with a list similar to this:
REM- esav TALK=V_HZ 15232
REM- esav TALK=V_KHZ 17664
REM- esav TALK=V_MHZ 20864
REM- esav TALK=V_N0 24064
REM- esav TALK=V_N1 26752
REM- esav TALK=V_N2 28544
REM- esav TALK=V_N3 30720
REM- esav TALK=V_N4 32640
REM- esav TALK=V_N5 34560
REM- esav TALK=V_N6 36736
REM- esav TALK=V_N7 38528
REM- esav TALK=V_N8 40448
REM- esav TALK=V_N9 41984

Use your editor to remove the REM- from each line and insert the TALK Directory
into the appropriate file or simply download it using the fox_simple utility.

Also keep in mind that the HEX file will have directory entries embedded. These directory en-
tries will not be saved as they are prefixed with a Remark command stem.

277

ICARC FOX Transmitters: 102-73181 KC0JFQ

Example Audio File Fragments:
REM- Input File: V_FOX34.r4k
REM- Output File: V_FOX34.hex
REM- RIFF/WAVE HEADER DUMP Input File: V_FOX34.r4k
REM- ChunkID RIFF
REM- ChunkSize 5616
REM- Format WAVE
REM- Subchunk1 ID fmt
REM- Subchunk1 Size 16
REM- Audio Format 1
REM- Num Channels 1
REM- Sample Rate 4000
REM- Byte Rate 4000
REM- Block Align 1
REM- Bits per Sample 8
REM- Subchunk2 ID data
REM- Subchunk 2 Size 5580
REM- esav TALK=V_FOX34 264960
:02 0000 04 0004 F6
:20 0B00 00 52494646F015000057415645666D74201000000001000100A00F0000A00F0000 9F
:20 0B20 00 0100080064617461CC150000807F808081808080807F80818282818080808180 2B
:20 0B40 00 7F8181808080807F7F7F7F8081808080807F7F807F8180818080808080808080 98

.

.

.
:20 20A0 00 7F8080808080807F808081818181808081808081818281818180818080818182 11
:20 20C0 00 81808080817F818181817F80807F7F7F8081808081817F808080818180808080 FB
:20 20E0 00 81818081818180808080808081818181807F807F7F8081810000000000000000 D8
:00 0000 01 FF
REM- FLASH Allocation Range: 0x040B00-0x0420FF
REM- FLASH Cluster MASK:FFFFFF80 Increment:127
REM- Next Step Arguments: -b -a 0x42100 -m(0,240)
REM- Audio min/max: 1(6) 240(2) V_FOX34.hex
REM- * * * * * * * * * * * * * * * * *

The audio_utility program generates an annotated HEX file for loading into the fox trans-
mitter system.
The header lines provide the RIFF/WAVE HEADER DUMP that decode the RIFF/WAVE
waveform file. The fox transmitter used the Sample Rate and ChunkSize fields directly. The
Num Channels and Bits per Sample fields are checked to verify mono 8 bit samples.
There are 3 type of InTel HEX records generated by the audio_utility program: A linear ad-
dress record, a data record, and an end of file record.
The linear address records appear at the begining of each chunk and every 16K samples in the
HEX file (whenever the lower 12 bits of the record address are zero).
The audio_utility program adds some follow-up notes at the end of the chunk.
The FLASH Allocation Range simply indicates the range of addresses in FLASH memory
occupied by this chunk of audio data.

278

ICARC FOX Transmitters: 102-73181 KC0JFQ

The FLASH Cluster line shows the cluster allocation control field. Each new chunk starts on
a boundary controlled by the MASK field. In this example, a new chunk starts on a 128 bye
boundary.
The Next Step Arguments show the control arguments that will be passed along to the next in-
vocation of the audio_utility program. Note that the -a field (the starting address) is after the
end of the FLASH Allocation Range.
The Audio min/max shows counts of the number of samples at minimum volume and maximum
volume.

15.3.1 Downloading at 115,200 b/S
Use the fox_binary utility to perform a high speed load. A description may be found in section
12.4 on page 239.
The fox_binary utility will send one of the following commands:

➟ H56K PROG

➟ H115 PROG

➟ H56K WAVE

➟ H115 WAVE

This switched bit rates and selects either the FRAM (PROG) or the FLASH (WAVE) and
switches to the binary protocol.

15.4 SOX
We use sox to resample audio data down to the require 4KHz or 5KHz sample rate. The sample
size is also reduced to mono 8 bits.

A typical invocation:
sox -v1.0 \$FILE.wav --rate 4000 --bits 8 R4K_\$FILE.wav
sox -v1.0 \$FILE.wav --rate 5000 --bits 8 R5K_\$FILE.wav

Volume is adjusted with the -v flag and the filename, as you would expect, is provided through
the $FILE variable.
The –rate 4000 selects the target sample rate. Shown are selections for 4KHz and 5KHz. The
fox transmitter will deal with 4KHz, 5KHz, 8KHz, 10KHz and 16KHz. Note that 8KHz and
above well exceeds the bandwidth allowed on the 2 meter band so should not be used.

The –bits 8 selects the sample width. This being required to be 8 bits.

I am not sure why we don’t specify single channel with –channels 1. It should not cause prob-
lems to explicitly specify this.

We should look at –encoding to see if we can improve audio quality using a-law or u-law.

https://sourceforge.net/projects/sox/

279

ICARC FOX Transmitters: 102-73181 KC0JFQ

15.5 Audacity
Audacity is used to edit voice clips for use in the Fox Trasmitter. Any example voice clips pro-
vided with the transmitter were edited using the Audacity utility.

https://www.audacityteam.org/

15.6 cwwav
The cwwav utility can be used to generate waveforms of Morse code data. The density of code
traffic in a wav file is far less than that achieved using the Fox Transmitter code generator. The
cwwav utility does provide for envelope shaping that the inernal code generator will not produce
for you.
A file produced by cwwav obtained from github needs to be resampled using sox to rework the
wav file to 8-bit unsigned mono data sampled at 4KHz. A modified cwwav utility is used by the
author to directly produce .wav files than can be processed by the

https://github.com/oyvholm/cwwav

280

Chapter 16

FOX Transmitter Label Utility

This is a utility to generate labels, cards, and log sheets for the ICARC fox junt.

A list of the transmitters in the transmitter stable is stored in the fox_label.csv file. These are all
the transmitters that are functional. We may not need all of the available transmitters.

The fox_label program is run once to produce all of the files that may need to be printed for
the fox hunt. All files are produce in order to keep the ID and validation code consistent. The
codes are randomly generated every time the fox_label program runs.

16.1 fox_label program
This is the utility that produces all the printable documents for the hunt. Running it produces
the following:

Table 16.1: fox_label output files
Type Contents Description

1 label fox_label_A_bot.ps Transmitter FCC Identification
2 label fox_label_A_top.ps Fox Hunt Identification
3 sheet fox_label_A_chk.ps Fox Hunt Setup Checklist
4 card fox_label_B_cards.ps Fox Hunt Participant Log Card
5 card fox_label_B_quick_cards.ps Fox Hunt Participant Log Card
6 card fox_label_B_hunter.ps Fox Hunt Participant Card
7 label fox_label_B_power.ps Fox PA power labels
8 card fox_label_C_FOX0.ps Fox Hunt Transmitter Found Card
n card fox_label_C_FOXn.ps (13 more of them in)

When the fox_label program runs, it deletes all of the FOX Transmitter Found Cards files be-
fore it produces new ones. This behavior is intended to eliminate stale files when you are setting
up for the next hunt. If you’re not paying close attention when you ask for new Found Cards, old
ones left from the last run could be used inadvertantly. Using the wrong starting offset (see -o on
page 284) or changing the contents of the fox_label.csv file could create this hazard.
Eliminating the old ones attempts to eliminate this hazard.

281

ICARC FOX Transmitters: 102-73181 KC0JFQ

Example of how the author uses the program. Refer to the csv file used in this example,
fox_label.csv in section 16.9 on page 290.
First we generate the pages needed for the hunt. The club where these were developed can
deploy up to 17 Fox Transmittters. We operate 12 stations in two groups, so it is only nec-
essary to generate labels for 12 units.

/home/wtr/Fox_Transmitter/trunk/fox_label \
-c "fox_label.csv" \
-o 0 \
-m 12 \
-C W0JV \
-e "ICARC Fox Hunt" \
-A 5371

Now we can print the check sheet that has information for the primary transmitter set (i.e.
the first 12 stations). The check sheet has 14 entries, so we get a couple of extras.

lp fox_label_A_chk.ps <--- plain paper
ls -l fox_label_A_bot.ps <--- we do these only once!

There are 5 stations that are used for training, so we don’t bother with check sheets and
labels for them.

Load 14-up stock for the transmitter labels that are updated for each hunt. These have
unique serial numbers that will be recorded by the hunters.

lp fox_label_A_top.ps <--- 14-up label stock

The hunter log cards aren’t unique, print more if needed.

lp -n2 fox_label_B_hunter.ps <--- 10-up business cards

282

ICARC FOX Transmitters: 102-73181 KC0JFQ

Now print the Found Cards for the new transmitters. For the ICARC hunt, these are the
transmitters that are spread out across the park (wide area).

lp fox_label_C_FOX21.ps <--- 10-up business cards
lp fox_label_C_FOX22.ps <--- 10-up business cards
lp fox_label_C_FOX23.ps <--- 10-up business cards
lp fox_label_C_FOX24.ps <--- 10-up business cards
lp fox_label_C_FOX25.ps <--- 10-up business cards
lp fox_label_C_FOX26.ps <--- 10-up business cards

These are the labels for the second hunt group. This hunt group operates on a different
frequency.

lp fox_label_C_FOX27.ps <--- 10-up business cards
lp fox_label_C_FOX28.ps <--- 10-up business cards
lp fox_label_C_FOX29.ps <--- 10-up business cards
lp fox_label_C_FOX30.ps <--- 10-up business cards
lp fox_label_C_FOX31.ps <--- 10-up business cards
lp fox_label_C_FOX32.ps <--- 10-up business cards

The remaining transmitters are operating as training aids so the labels unique to the hunt
aren’t updated. The novice hunter can simply note on the hunt card that the transmitter
was located.

16.1.1 fox_label -h
Help text.

16.1.2 fox_label -A
Avery_Number.

5329
Half size business cards. More per sheet, so less cost?
1 by 3 inch cards, 16 up.

5371
Full size business cards. Get ’em cheap on Amazon.
2 x 3 1/2 inch cards, 10 up.

16.1.3 fox_label -C
SECONDARY_Callsign.

Sets the callsign that appears on labels, cards and log sheets.

283

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.1.4 fox_label -o
O_offset.

Entry offset in the fox_label.csv file.
Comment lines are not counted.
Using -o0 starts at the the first entry.

16.1.5 fox_label -m
Check_Page_Count.

Sets the number of entries on the check sheet.
This is used to limit the number of transmitters reported on the check sheet when processing
more transmitters that will fit on that check sheet.
This avoids creating duplicate labels which would have un-matched serial numbers.
This is also useful in keeping unused transmitters off of the list. We don’t have to fill the page
out!

16.1.6 fox_label -d
DBG_Level.

Increases the debug level by one.
Currently level 1 is everything!

16.1.7 fox_label -e
Event Name.

Sets the event name that appears on labels, cards and log sheets.

16.1.8 fox_label -p
Contact Phone Number.

Argument sets the phone number that appearts on the fox_label_A_bot.ps labels.

16.1.9 fox_label -P
Photo background scale.

Argument may appear multiple times.
This provides a set of labels and a scale for photographing boards. Each additional -P <arg>
adds a line of text.

The -p <offset> is not used to hold a phone number as the standard set of labels are not gen-
erated when -P is used. Rather this argument is an offset applied to the scale to move the X axis
zero left or right.

284

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.2 fox_label_A_bot
These labels are provided to permanantly attach to the transmitter to identify it and provide
contact information in the event it is lost or inadvertantly removed.

Figure 16.1: FOX Transmitter BOT Labels

Note that these labels are labeled with the transmitter nickname. They should be attached to the
side of the enclosure that the circuit board is mounted to when the fox transmitter is first put
into service. This helps prevent the identity of the transmitter being switched with another unit
when the enclosures are opened.

These labels are not keyed to a particular hunt.

Use the -o <n> argument to fox_label to select the starting point in the csv file.

16.3 FOX HUNT Checkin Card
The Hunter Cards can be printed as a convenient means of keeping track of the participants.

Figure 16.2: FOX HUNT Checkin Card

Noting that the only time sensitive information on the card is the date the cards were generated,
it is not really necessary to wait until the last minute to produce these.

These can stay at the hunt operators position or they may travel with the hunters.

285

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.4 FOX HUNT Check Sheet
This is the check sheet for the organizer. Use it for collecting together the transmitters re-
quired for the hunt. There are open areas on the sheet to record battery voltage and current ob-
served when the TOY clock is set the day before the hunt. The fox_label_A_top file must be
printed from the same run in order for the serial numbers to match!

Figure 16.3: FOX HUNT Check Sheet

Use the Event Validation Code column to verfiy that the hunter actually found the transmit-
ter.
Pay attention to the FRAM/FLASH column to see that the FRAM and FLASH devices are
of adequate size to hold the sequencing commands and the audio files you will use for your hunt.
The column is expressed in units directly from the manufacturer datasheet, that is to say in bits.
To arrive at command.sequence record count divide bit size by 256 (8 bit bytes, 32 byte records).
To estimate audio time, divide the bit size by 36,000 (8 bit samples and 4000 or 5000 samples per
second).
In this example, FOX24 has a small FRAM device. This size device holds only 256 com-
mand/sequence records. The other transmitters in the group, being much larger, hold 1024 or
more records. The small FRAM device (256 or less records) is flagged in red.
The FLASH device sizing is handled in a somewhat similar manner. The minimum size device
for convenient operation is one that holds at least 2 minutes of audio (i.e. a 4Mb device). A 2Mb
device is flagged in orange and a 1Mb or smaller device is flagged in red.

286

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.5 fox_label_A_top
These labels are unique to the fox hunt. The labels have a generated ID and validation code.
They should be produced, printed, and affixed the day before the hunt. The fox_label_A_chk
must be printed from the same run!

Figure 16.4: FOX Transmitter TOP Labels

These labels are placed on the removeable enclosure cover. These labels are generated before each
hunt and affixed to the trasmitter. The labels have ID values that generated when the label util-
ity runs.

The fox_label_A_top and the fox_label_A_chk files should be generated in one run of the
fox_label program to keep the ID and validation code values synchronized.

You will need to perform some shell-script gymnastics to setup a hunt that requires more than 14
Fox Transmitters. The fox_label utility eliminates all existing fox_label files before generating
new files.

16.6 fox_label_C_FOX*, Serialized Finder Card
These labels are printed on cardstock to be left with the transmitter to be picked up by the
hunters. The fox_label_A_top and fox_label_A_chk files must be generated in the same
run to keep the serial numbers synchronized!

Figure 16.5: FOX Transmitter Found Cards

The Found Cards are printed on business card stock, 10 per page. The fox_label utility pro-
duces files for each of the transmitters listed in the fox_label_A_top file (14 of them).

Simply print a sheet for each transmitter, split them out and rubberband them to the (correct)
transmitter. Hunters then take a (single) card from each transmitter to document that they did,
in fact, find them.

287

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.7 fox_label_B_cards; Tx Found Log Card
The Capture Cards can be printed when a larger number of participants are expected. This
would be necessary if there aren’t enough These cards are not dated or serialized so thay aren’t
time sensitive. They can be carried forward from one hunt to the next. Transmitter Found Cards
to accommodate all the participants.

These are printed on 4-up post-card stock.

Figure 16.6: FOX HUNT Capture Card

The participant can fill in their callsign, the date of the hunt, and a card index (in the event
more than 9 transmitters are used).
Then, for each transmitter located, the transmitter number (as we call the transmitters FOX0
through FOXnn), and the validateion codes listed on the transmitter labels.

288

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.8 fox_label_B_quick_cards; Quick Found Log Card
These Capture Cards can be printed for an informal hunt. This eliminates the need to print the
Transmitter Found Cards on page 287

These are printed on 4-up post-card stock like the fox_label_B_cards.

Figure 16.7: FOX HUNT Quick Found Card

The color of the Nickname field arranges the fox transmitters into their hunt groups.
The fox Nicknames are derived from the fox_label.csv file. The operating frequency is also stored
in this file.

289

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.9 fox_label.csv
The transmitter information file.

Listing 16.1: fox_label.csv
1# LAST LOAD: updated 2025−Jun−08T20 : 3 8 : 3 5 by /home/ wtr / Radio / halo_term / f o x _ c l o c k
2#Fox , c a l l , o p e r a t e , s t a r t u p , FRAM, FLASH, S/W−V, t r a n s m i t t e r / a m p l i f i e r , Syn−Xtal , TxPWR, RUN, Id−V, Id−I , Tx−V, Tx−

↪→ I , Toff , IP−Addr , MAC−Address
3FOX21 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 4096K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 7 0 . 0 , S6 , 8 . 0 , 24 , 7 . 6 ,

↪→ 122 , Off : 1
4FOX22 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 8192K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 8 0 . 0 , S6 , 8 . 9 , 38 , 8 . 6 ,

↪→ 123 , Off : 2 0
5FOX23 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 8192K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 9 5 . 0 , S6 , 7 . 9 , 54 , 7 . 2 ,

↪→ 157 , Off : 1 3
6FOX24 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 4096K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 6 0 . 0 , S6 , 9 . 2 , 32 , 9 . 0 ,

↪→ 110 , Off : 1 3
7FOX25 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 4096K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 5 0 . 0 , S6 , 8 . 8 , 37 , 8 . 6 ,

↪→ 123 , Off : 2 2
8FOX26 , W0JV, 1 4 4 . 2 2 5 , 1 4 4 . 1 5 0 , 256K, 8192K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 8 0 . 0 , S6 , 8 . 2 , 32 , 7 . 8 ,

↪→ 123 , Off : 2 3
9# 1 2 3 4 5 6 7 8 9 0 1 2
10#123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 6
11#
12FOX27 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 1 1 5 . 0 , S0 , 8 . 6 , 29 , 8 . 3 ,

↪→ 121 , Off : 2 6
13FOX28 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 1 0 0 . 0 , S0 , 8 . 0 , 32 , 7 . 5 ,

↪→ 118 , Off : 1 6
14FOX29 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 262144K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 1 0 0 . 0 , S0 , 6 . 7 , 46 , 5 . 4 ,

↪→ 171 , Off : −86391
15FOX30 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 262144K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 1 0 0 . 0 , S0 , 7 . 8 , 47 , 7 . 2 ,

↪→ 151 , Off : 1 6
16FOX31 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 5 0 . 0 , S0 , 7 . 6 , 39 , 7 . 1 ,

↪→ 136 , Off : 1
17FOX32 , W0JV, 1 4 4 . 3 2 5 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73181_28 , 2 0 . 0 0 0 , 8 5 . 0 , S0 , 7 . 4 , 40 , 6 . 2 ,

↪→ 159 , Off : 4 1
18#
19FOX33 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 256K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 3 5 . 0 , S8 , 8 . 7 , 27 , 8 . 5 ,

↪→ 104 , Off : 2 6
20FOX34 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 6 0 . 0 , S9 , 7 . 7 , 18 , 7 . 3 ,

↪→ 120 , Off : 0
21FOX35 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 4 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 5 . 0 , , 0 . 0 , 0 , 0 . 0 ,

↪→ 0 , ?
22FOX36 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 256K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 6 0 . 0 , S0 , 9 . 6 , 38 , 9 . 4 ,

↪→ 115 , Off : 2 1
23FOX37 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 1 2 0 . 0 , S0 , 9 . 9 , 34 , 9 . 7 ,

↪→ 102 , Off :−9
24FOX38 , W0JV, 1 4 4 . 2 5 0 , 1 4 4 . 1 5 0 , 512K, 65536K, V4 . 0 8 , 102 _73181_10 /102 _73161_28 , 2 0 . 0 0 0 , 6 0 . 0 , S0 , 8 . 8 , 26 , 8 . 6 ,

↪→ 106 , Off : 2 4
25#

When calling fox_label with the -o argument, the numberic value to -o is the number of text
lines in the csv file to skip. Our -o 8 used above skips over the first 8 records. In the example
fox_label.csv file, FOX29 would be the starting point with -o 8.

16.9.1 fox_label.csv; First Line
The first line of the csv file must be formatted as shown. The fox_clock utility updates data in
this file as the TOY clock is set prior to the hunt.
The 1st. 12 12 characters will cause the fox_clock utility to update the date on this line to reflect
when it accessed the file.

16.9.2 fox_label.csv; Column 1
FOX Unit Number or name.
This number is somewhat arbitrary. Units are just numbered in sequential order. Breaks in the
sequence are allowed.

290

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.9.3 fox_label.csv; Column 2
Station Callsign.
This is the callsign that appears on the labels.
When a callsign (using the -C flag) is specified this field is ignored.

This should match with the INI=CALL <callsign> record in the fox transmitter file system.

16.9.4 fox_label.csv; Column 3
Operating Frequency.
This is the frequency the fox transmitter will use during the hunt.

16.9.5 fox_label.csv; Column 4
Setup Frequency.
The transmitter sends setup confirmation and status on this frequency when switched on.
A properly configured system will switch over to the operating frequency after the setup message
has been sent on this frequency.

16.9.6 fox_label.csv; Column 5
FOX Unit FRAM Size.
This is the size of the FRAM device as reported in the startup banner.

16.9.7 fox_label.csv; Column 6
FOX Unit FLASH Size.
This is the size of the FLASH device as reported in the startup banner.
Older hardware shows NULL to indicate that there is no FLASH device present.

16.9.8 fox_label.csv; Column 7
zNEO software revision.
The software revision of the operating software that operates the Fox Transmitter.

16.9.9 fox_label.csv; Column 8
Transmitter hardware revision and daughterboard hardware revision.
These are the drawing numbers for the main transmitter board and the attached RF daughter-
board. The two drawing numbers may be seperated using a slash (/) character.

16.9.10 fox_label.csv; Column 9
Reference crystal on the RF synthesizer (expressed in MHz).
This is the crystal used by the ICS525/ICS307/SI5351.

291

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.9.11 fox_label.csv; Column 10
Measured Transmit Power.
Measured during initial testing. Essentially with the transmitter on the bench, connected to a
power meter, when it is first configured and mated with an RF daughterboard.
All of the RF power is flowing to the meter so the current sense circuit works correctly and that
measurement probably comes as a byproduct of this measurement.

16.9.12 fox_label.csv; Column 11
Active RUN Schedule
The clock setting utility captures the schedule that is activated in the ANN= file and records it
here.
The active schedule is then printed on the check sheet to confirm that the fox skulk is correctly
setup.

16.9.13 fox_label.csv; Column 12
Idle Battery Voltage.
Battery voltage reported by the transmitter when not transmitting.
This voltage can be seen when the transmitter is connected to a host system through the serial
cable using the STAT command.

These columns in the .csv file can be updated as the TOY Clock is updated just prior to the
hunt.
Labels can be printed after the .csv file has been updated.

16.9.14 fox_label.csv; Column 13
Idle Battery Current.
Battery current reported by the transmitter when not transmitting.
This current can be seen when the transmitter is connected to a host system through the serial
cable using the STAT command.

16.9.15 fox_label.csv; Column 14
Transmitting battery voltage.
Battery voltage reported by the transmitter when transmitting.
This voltage shows up in battery reporting commands when transmitting.
This voltage can be seen when the transmitter is connected to a host system through the serial
cable using the STAT command. Both idle voltage and transmit voltage are visible when using
the STAT command.

292

ICARC FOX Transmitters: 102-73181 KC0JFQ

16.9.16 fox_label.csv; Column 15
Transmitting Battery Current
Battery current reported by the transmitter when transmitting.
This current shows up in battery reporting commands when transmitting.
Some units seem to have difficulty with this when using higher powered RF amplifiers.
This current can be seen when the transmitter is connected to a host system through the serial
cable using the STAT command. Both idle current and transmit current are visible when using
the STAT command.

16.9.17 fox_label.csv; Column 16
TOY clock offset.
The fox_clock utility captures the time value from the second TIME command and calculates
an offset from the host time. This is all done on a seconds-of-day basis, to accommodate a target
Fox Transmitter that is using a truncated UNIX time.

16.9.18 fox_label.csv; Column 17&18
Raspberry-PI Zero-W Network Settings
These columns will show the assigned IP (assuming the host network assigns a static IP) and the
Raspberry-PI MAC address.
These appear only for the Raspberry-PI based hardware.

293

ICARC FOX Transmitters: 102-73181 KC0JFQ

294

Chapter 17

Synthesizer configuration utilities

These are the utilities used to build the configuration tables for the RF synthesizer chips.

17.1 SI5351 configuration table utility

This is a bit of code pulled together from various sources that is used to build the configuration
table for the SI5351 device.
Nominally, the tables are stored in the zNEO program flash for immediate use by the FREQ
command.
Table space in the zNEO is limited so there are a limited number of entries in this table.
The internal table is initially produced by the si5351a_calc utility and compiled into the si5351
driver. The contents of the table may be dumped using the command: 5351 TABLE. If a fre-
quency you wish to make use of is not in the table, the si5351a_calc utility may be used to gen-
erate the Multisynth parameters necessary to configure the si5351 for that frequency.
The zNEO software suite may then be re-compiled (assuming you have the requisite tools) or
loaded using the 5351 FREQ frequency, 5351 PLLS P1, P2, P3 and 5351 MS P1, P2, P3
commands to store the setup values.
Although these commands may be placed into the INI= file or the Sn= file for field use, a better
scheme is described in section 5.6 on page 104.

295

ICARC FOX Transmitters: 102-73181 KC0JFQ

The si5351a_calc utility builds a c fragment like the following:

//
// Version V1.0
//
// ./si5351a_calc -T2 -F 144.1,144.21,25.0 -o -17
//
// Using a crystal frequency of: 20.000 MHz
// Frequency Offset -17.000KHz
// Starting Frequency 144.100MHz
// Ending Frequency 144.210MHz
// Frequency Step 25.000KHz
// Calculation method TWO kc0jfq_setup()
//
rom float SI5351_CRYSTAL = 20.000;
rom char si5351_calc[] = {"./si5351a_calc -T2 -F 144.1,144.21,25.0 -o -17 "};
//
rom struct SI5351_FREQ_TBLE si5351_frequency_table[] = {
// Stage 1 Synthesizer Stage 2 Synthesizer Internal Output
// char* long long long int int int VFO Multisynth
// Frequency MSNxP1 MSNxP2 MSNxP3 MSx_P1 MSx_P2 MSx_P3 Frequency Divisor

{R"144.100", 0x139C, 0xC0300, 0xF4240, 0x0100, 0x00, 0x01 }, // 864.498 1 6 T2 OFF=-17.0K
{R"144.125", 0x139D, 0xB66BF, 0xF4240, 0x0100, 0x00, 0x01 }, // 864.648 2 6 T2 OFF=-17.0K
{R"144.150", 0x139E, 0xACA7F, 0xF4240, 0x0100, 0x00, 0x01 }, // 864.798 3 6 T2 OFF=-17.0K
{R"144.175", 0x139F, 0xA2E3F, 0xF4240, 0x0100, 0x00, 0x01 }, // 864.948 4 6 T2 OFF=-17.0K
{R"144.200", 0x13A0, 0x991FF, 0xF4240, 0x0100, 0x00, 0x01 }, // 865.098 5 6 T2 OFF=-17.0K
{ NULL, 0, 0, 0, 0, 0, 0 } };

The comment text indicates the parameters used to generate the file; the frequency range, the
frequency step size and the crystal used by the SI5351 on the circuit board.
There is a provision for the application of a frequency offset as part of a debugging effort. In
practice, we use an entry in the internal 5351 setup table to measure the carrier offset (from nom-
inal) and then use this error to the build an externally loaded table. See section 5.6 on page 104
for details on managing an external frequency table for the SI5351.

Commands used to run a quick test of the 144.175MHz MSNA divisors follows:

5351 TEST 139F,A2E3F,F4240

This will load the SI5351 and generate a stream of HI HI HI... until a keypress.
If access to the MSA Multisynth is required, it can be loaded as well:

5351 FREQ 144.175,0
5351 PLLS 139F,A2E3F,F4240
5351 MS 100,0,1

296

ICARC FOX Transmitters: 102-73181 KC0JFQ

The path through the SI5351 can be verified by loading them into the SI5351 and then dumping
the SI5351 registers to see that the patterns were correctly formed and loaded.

5351 LOAD
5351 DUMP

The 5351 LOAD command takes the patterns stored using the FREQ, PLLS, and MS sub-
commands and sends them to the SI5351.
Then the SI5351 register dump (5351 DUMP) verifies that the patterns were correctly pro-
cessed and loaded.

17.1.1 Frequency Tuning
The SI5351 configuration table utility can be used to zero in on the best divisors using only a
handie-talkie by generating a table around the target frequency. The MSNA divisors can be
loaded to find the set that best centers on the target frequency.
The example here is a test generated during testing of the prototype unit. A frequency offset of
17KHz appears in the system (this is corrected using the -o -17 controls).

./si5351a_calc -C2 -F 144.14,144.16,1.0 -o -17 | grep TEST > si5351a_test_zero.c

5351 TEST 139E,4EE7F,F4240
5351 TEST 139E,58480,F4240
5351 TEST 139E,61A7F,F4240
5351 TEST 139E,6B080,F4240
5351 TEST 139E,7467F,F4240
5351 TEST 139E,7DC7F,F4240
5351 TEST 139E,87280,F4240
5351 TEST 139E,90880,F4240
5351 TEST 139E,99E80,F4240
5351 TEST 139E,A347F,F4240
5351 TEST 139E,ACA7F,F4240
5351 TEST 139E,B6080,F4240
5351 TEST 139E,BF680,F4240
5351 TEST 139E,C8C80,F4240
5351 TEST 139E,D2280,F4240
5351 TEST 139E,DB87F,F4240
5351 TEST 139E,E4E80,F4240
5351 TEST 139E,EE47F,F4240
5351 TEST 139F,03840,F4240
5351 TEST 139F,0CE3F,F4240
5351 TEST 139F,16440,F4240

The commands can be copied into the fox transmitter and the handie-talkie can move one step in
either direction to gauge that the SI5351 is generating the correct frequency.
A frequency counter would also be of use here. Use a 102-73161-22 AMP BYPASS board to
connect the output of the SI5351 directly to the BNC connector.
We also have fab’d a filter test jig (102-73181-60) that can be used in place of the RF daughter-
board to route the output of the SI5351 to an SMA connector.

17.1.2 Synthesis Divisor calculation method TWO
You should notice that the table fragment earlier indicates the method used to calculate the divi-
sors. The code for method TWO is detailed here.

297

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.1: si5351a_calc-172
172i n t kc0j fq_setup (double xta l , double fout , i n t ∗ms_values , double ∗ abcdef ,

↪→ i n t f l a g) {
173double bc128_f loor ;
174double de f _ f l o o r ;
175double abc_fvco ;
176double MSNx_P[4] = { 4 ∗ 0 . 0 } ;
177double MSx_P[4] = { 4 ∗ 0 . 0 } ;
178double f a ;
179i n t s t s ;

What we need to build the divisor table:

1. xtal
This is the SI5351 crystal frequency, X5.

2. fout
This is the output frequency that will appear on one of the CLKn pins.

3. ms_values
This array holds the calculated register values for the MSNx and MSx synthesizers.

4. abcdef
This array holds the intermediate values that are used in the calculation. They provide visi-
bility into the calculation.

5. flag
Diagnostic enable flag. Set to non-zero to cause the routine to display some of its internal
actions.

Listing 17.2: si5351a_calc-29
29#d e f i n e RFZERO_MSNx_P1 0
30#d e f i n e RFZERO_MSNx_P2 1
31#d e f i n e RFZERO_MSNx_P3 2
32#d e f i n e RFZERO_MSx_P1 3
33#d e f i n e RFZERO_MSx_P2 4
34#d e f i n e RFZERO_MSx_P3 5
35#d e f i n e RFZERO_RX_DIV 6
36#d e f i n e RFZERO_MSX_DIVBY4 7

These are the index names for the abcdef array.
The RFZERO_MSNx_Px variables are the register patterns for the Stage 1 MSNA and
MSNB Multisynth.
The RFZERO_MSx_Px variables are the register patterns for the Stage 2 MS0..MS2 Multi-
synth.
The RFZERO_RX_DIV variable is the value for the divider on the output of the MS0..MS2
Multisynth. It should always be zero, indicating divide-by-1.
The RFZERO_MSX_DIVBY4 variable is the enable flag for the divide-by-4 on the output
of the MS0..MS2 Multisynth. It should always be zero, indicating the divide-by-4 function is not
in use.

298

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.3: si5351a_calc-180
180//
181// Star t by c a l c u l a t i n g the output to input f requency r a t i o .
182// We need t h i s to come up with the VCO frequency
183//
184abcdef [VCO_MULT] = fout / x t a l ;

First step is to determine the factor used by the first Multisynth.
This is simply the desired output frequency divided by the SI5351 crystal frequency. This is the
basis for the MSNA register values.

Listing 17.4: si5351a_calc-185
185//
186// Get the VCO to run between 600MHz and 900MHz
187// −−−−−− −−−−−−
188// So get the product o f the m u l t i p l i e r from above
189// and an i n t e g e r d i v i s i o n o f the VCO frequency
190// (and a power−of −2, i f p o s s i b l e)
191//
192abcdef [FB_DIV] = 0 ;
193abcdef [VCO_FREQ] = 0 . 0 ;
194//
195// Loop through even " abcdef [FB_DIV] " r a t i o s
196//
197whi le (abcdef [VCO_FREQ] <=900.0E6) {
198abcdef [VCO_FREQ] = x t a l ∗ abcdef [VCO_MULT] ∗ abcdef [FB_DIV] ;
199i f ((abcdef [VCO_FREQ] >=600.0E6))
200break ;
201abcdef [FB_DIV]+=2;
202}

Now we will come up with the VCO operating frequency.
We want it to be an even multiple of the output frequency so the MSA Multisynth can operate in
integer mode. As long as we can keep the VCO operating between 600MHz and 900MHz it will
be happy.
As we’re way down in the 2M band, this isn’t a problem.
The MSZ Multisynth also prefers to operate with an even value divisor, so we’ll step through the
even values to start.

299

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.5: si5351a_calc-204
204// I f we didn ’ t f i n d a " pre t ty spot " , where the
205// VCO w i l l be happy , t ry again us ing odd d i v i s o r s
206//
207i f (abcdef [VCO_FREQ] >900.0E6) {
208abcdef [FB_DIV] = 1 ;
209abcdef [VCO_FREQ] = 0 . 0 ;
210whi le (abcdef [VCO_FREQ] <=900.0E6) {
211abcdef [VCO_FREQ] = x t a l ∗ abcdef [VCO_MULT] ∗ abcdef [FB_DIV] ;
212i f ((abcdef [VCO_FREQ] >=600.0E6))
213break ;
214abcdef [FB_DIV]+=2;
215}
216}

As the comment indicates, if we run this code, then we’re going to end up with an ugly divisor
(i.e. an odd number).
Since we’re below 150MHz in the 2M band, this code should never run.

Listing 17.6: si5351a_calc-217
217//
218// I f the abcdef [VCO_FREQ] exceeds 900MHz, we ’ ve f a i l e d , and miserab ly

↪→ at that
219// we ’ l l n o t i c e i t l a t e r and zero out the c o n t r o l words . . .
220//
221i f (f l a g) {
222f p r i n t f (stdout , "\n ") ;
223f p r i n t f (stdout , " ") ;
224f p r i n t f (stdout , " x t a l %.3 f " , x t a l /1 .0E6) ;
225f p r i n t f (stdout , " t r g t %.3 f " , f out /1 .0E6) ;
226f p r i n t f (stdout , " d iv s %.3 f " , abcdef [FB_DIV]) ;
227f p r i n t f (stdout , " mult %.3 f " , abcdef [VCO_MULT]) ;
228f p r i n t f (stdout , "VCOf %.3 f " , abcdef [VCO_FREQ] / 1 . 0 E6) ;
229f p r i n t f (stdout , "\n ") ;
230}

Diagnostics. This emits a report if the flag variable is non-zero.

300

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.7: si5351a_calc-231
231//
232// Here we ’ re going to try to come up with the
233// " Synthes i s , Stage 1" r e g i s t e r va lue s
234//
235// the " a " f i e l d i s the i n t e g e r por t i on o f the
236// x t a l m u l t i p l i e r . b/c i s the f r a c t i o n .
237//
238// fa = modf (abcdef [VCO_MULT] , &abcdef [AIDX]) ;
239//
240// abcdef [AIDX] . f a i s the x t a l m u l t i p l i c a t i o n f a c t o r
241//
242f a = modf (abcdef [VCO_MULT] ∗ abcdef [FB_DIV] , &abcdef [AIDX]) ;

the modf library routine is used to split the MSNA Multisynth crystal clock multiplier into inte-
ger and fractional portions.
The fa variable will hold the fraction. It should be less than one or the library routine messed
up.
The abcdef [AIDX] variable ends up with the integer portion.

Listing 17.8: si5351a_calc-243
243//
244// fa i s the f r a c t i o n a l part , so c a l c u l a t e
245// b/c = fa
246//
247switch (2) {
248case 1 :
249abcdef [BIDX] = fa ∗ K1048575 ;
250abcdef [CIDX] = K1048575 ;
251break ;
252case 2 :
253abcdef [BIDX] = fa ∗ Kvalue ;
254abcdef [CIDX] = Kvalue ;
255break ;
256}

Refer to the Skyworks application note AN619 section 3.2 for details of the calculation used to
produce the Multisynth register values.
We now need the fractional portion of the divisor to be expressed as a numerator and denomi-
nator. The numerator in the [BIDX] variable and the denominator. in the [CIDX] variable. We
have some flexibility here, so we can simply maximize the [CIDX] variable (case ’1’) or use some-
thing else, like the largest power of 10 that fits (case ’2’).
Using the largest power of 10 approach, the [BIDX] variable ends up being expressed as the frac-
tional part shifted left (a decimal shift). Now the [BIDX] variable looks like the fractional part
from above.

301

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.9: si5351a_calc-257
257//
258// OK, now we have the " a " , "b " , and " c " numbers to
259// c a l c u l a t e the r e g i s t e r va lue s . AN619−3 S−3.2
260//
261abcdef [BCFRAC] = abcdef [BIDX] / abcdef [CIDX] ;
262abc_fvco = x t a l ∗ (abcdef [AIDX] + abcdef [BCFRAC]) ;

The fraction we built with [BIDX]/[CIDX] above is stuffed into abcdef[BCFRAC] so it is visi-
ble to the caller.
The abc_fvco variable is used in several parts of the Skyworks calculation, so we perform the
calculation once so it doesn’t get inadvertently altered by a crooked finger as the code file is
edited.
The abc_fvco variable should have the same value as the abcdef[VCO_MULT] variable from
earlier.

Listing 17.10: si5351a_calc-263
263//
264// We w i l l use t h i s " f l o o r " func t i on twice , so do i t once
265// here so i t doesn ’ t get mangled a c c i d e n t a l l y l a t e r . . .
266//
267bc128_f loor = f l o o r (128 . 0 ∗ abcdef [BCFRAC]) ;

We do this calculation once here and use it several times.
The floor routine simply returns the largest integral value that is not greater than the argument.
This shifts the decimal point in the fraction to the right 7 bits.

Listing 17.11: si5351a_calc-268
268//
269// Ca l cu l a t i on f o r the 1 s t . Mult isynth : AN619−3 S−3.2
270//
271MSNx_P[1] = 128 .0 ∗ abcdef [AIDX] + bc128_f loor − 512 ;
272MSNx_P[2] = 128 .0 ∗ abcdef [BIDX] − (abcdef [CIDX] ∗ bc128_f loor) ;
273MSNx_P[3] = abcdef [CIDX] ;

0

Now we can build the values that will be loaded into the MSNA and MSNB registers.

302

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.12: si5351a_calc-274
274//
275// OK< the 1 s t . Mult isynth va lue s are saved . . .
276//
277i f (f l a g) {
278f p r i n t f (stdout , " MUL ") ;
279f p r i n t f (stdout , " abcdef [AIDX](%.3 f) abcdef [BIDX](%.3 f) abcdef [CIDX

↪→] (%.3 f) " , abcdef [AIDX]+ fa , abcdef [BIDX] , abcdef [CIDX]) ;
280f p r i n t f (stdout , " f l o o r (%.3 f) " , bc128_f loor) ;
281f p r i n t f (stdout , " fvco (%.3 f) " , abc_fvco /1 .0E6) ;
282f p r i n t f (stdout , "\n ") ;
283f p r i n t f (stdout , " ") ;
284f p r i n t f (stdout , "MSNx_P[1] %.3 f " , MSNx_P[1]) ;
285f p r i n t f (stdout , "MSNx_P[2] %.3 f " , MSNx_P[2]) ;
286f p r i n t f (stdout , "MSNx_P[3] %.3 f " , MSNx_P[3]) ;
287f p r i n t f (stdout , "\n ") ;
288}

Listing 17.13: si5351a_calc-289
289//
290// 2nd . Mult isynth c a l c u l a t i o n s .
291// Another i n s t a n t i a t i o n o f t h i s block ,
292// so the c a l c u l a t i o n s are the same , j u s t
293// us ing a d i f f e r e n t d i v i s o r .
294// RENAME a , b , c to d , e , f so we don ’ t
295// ove rwr i t e prev ious work . . .
296//
297// We’ ve b u i l t upon the assumption that t h i s
298// Mult isynth i s opera t ing in i n t e g e r mode ,
299// so the d and e numbers s p e c i f y zero .
300//
301abcdef [DIDX] = abcdef [FB_DIV] ;
302abcdef [EIDX] = 0 ;
303abcdef [FIDX] = K1048575 ;
304abcdef [EFFRAC] = abcdef [EIDX] / abcdef [FIDX] ;

The MS0, MS1, and MS2 Multisynths are setup the same. The values they are loaded with are
calculate din the same manner as the MSNA and MSNB Multisynths above, but we know that
the divisor is integer, so the [EIDX]/[FIDX] fraction will be zero.
The [DIDX], as should be evident, is simply the VCO divisor calculated earlier.

Listing 17.14: si5351a_calc-305
305//
306// That f l o o r funct ion , from above . . .
307//
308d e f _ f l oo r = f l o o r (1 2 8 . ∗ abcdef [EFFRAC]) ;

As we did above, the FLOOR calculation is done once here and used in several locations.

303

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.15: si5351a_calc-309
309//
310// Ca l cu l a t i on f o r the 2nd . Mult isynth : AN619−5 S −4.1 .2
311// We’ re opera t ing in the 2M band , so we WILL stay below 150MHz
312// so make use o f the same equat ion s e t us ing d i f f e r e n t data .
313// Since t h i s i s an i n t e g e r d i v i s i o n , the [2] f i e l d should c a l c u l a t e
314// as ZERO. Later we w i l l change the [3] f i e l d to 1 so i t l ook s n i c e .
315//
316MSx_P[1] = 128 .0 ∗ abcdef [DIDX] + d e f_ f l o o r − 512 ;
317MSx_P[2] = 128 .0 ∗ abcdef [EIDX] − abcdef [FIDX] ∗ d e f_ f l oo r ;
318MSx_P[3] = abcdef [FIDX] ;

Now the numbers for the three Multisynth registers can be calculated. This is the same as the
MSNA/MSNB Multisynths.

Note that the MSx_P[1] calculation shifts the bits up in the P1 register. For the 2M band, we
will arrive at a divisor of 6.000 which all ends up in MSx_P[1] as a value of 0x100.
We end up with: (128 * 6) - 512.

Listing 17.16: si5351a_calc-319
319//
320//
321//
322i f (f l a g) {
323f p r i n t f (stdout , " DIV ") ;
324f p r i n t f (stdout , "d(%.3 f) e (%.3 f) f (%.3 f) " , abcdef [DIDX] , abcdef [

↪→ EIDX] , abcdef [FIDX]) ;
325f p r i n t f (stdout , " f l o o r (%.3 f) " , d e f _ f l o o r) ;
326f p r i n t f (stdout , "\n ") ;
327f p r i n t f (stdout , " ") ;
328f p r i n t f (stdout , "MSx_P[1] %.3 f " , MSx_P[1]) ;
329f p r i n t f (stdout , "MSx_P[2] %.3 f " , MSx_P[2]) ;
330f p r i n t f (stdout , "MSx_P[3] %.3 f " , MSx_P[3]) ;
331f p r i n t f (stdout , "\n ") ;
332}

Diagnostics.

304

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.17: si5351a_calc-333
333//
334// Last minute s an i ty checks .
335// I f we try to dr iv e the i n t e r n a l VCO past 900MHz
336// we are operat ing out−of−spec , so i n d i c a t e a
337// problem by zero−ing out a l l the counter s
338//
339// I f we are " in−spec " copy the r e s u l t s to
340// the c a l l e r s b u y f f e r s .
341//
342i f ((abcdef [VCO_FREQ] <=900.0E6) &&
343(abcdef [VCO_FREQ] >=600.0E6)) {
344//
345// 1 s t . Mult isynth
346//
347ms_values [RFZERO_MSNx_P1] = MSNx_P[1] ;
348ms_values [RFZERO_MSNx_P2] = MSNx_P[2] ;
349ms_values [RFZERO_MSNx_P3] = MSNx_P[3] ;
350//
351// 2nd . Mult isynth
352//
353ms_values [RFZERO_MSx_P1] = MSx_P [1] ;
354ms_values [RFZERO_MSx_P2] = MSx_P [2] ;
355ms_values [RFZERO_MSx_P3] = MSx_P [3] ;

Last sanity checks before we pass the calculated values back to the caller.
The sanity check is to see that the VCO frequency is within the range allowed by the SI5351.

Listing 17.18: si5351a_calc-356
356//
357// 2nd . Mult isynth f r a c t i o n c o n t r o l :
358// we ’ re i n t e g e r d i v i s i o n j , so f r a c t i o n i s
359// s e t to ZERO by making [2]=0 and [3]=1
360// i . e . 0/1 f o r a f r a c t i o n a l part o f the d i v i s o r
361//
362i f (! ms_values [RFZERO_MSx_P2])
363ms_values [RFZERO_MSx_P3] = 1 ;

Now for a bit of cleanup. The MS0..MS0 Multisynths are to be operated in integer mode, so the
P2 and P3 registers need to loaded with zero. If the P2 register is zero, the the value of P3 may
be any value (as its not used).
So if the calculated P2 value is zero (and it should be) the force the P3 value to 1 to make the
displayed number smaller (i.e. only one character, rather than 5).

305

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.19: si5351a_calc-364
364//
365// The R Div ide r s (AN619−6 S −4 .2 .2)
366// are s e t to " d i v i d e by 1" us ing an
367// index o f 0 .
368// This i s because we are opera t ing
369// we l l above the 500KHz point where these
370// d i v i d e r s become nece s sa ry .
371//
372ms_values [RFZERO_RX_DIV] = 0 ;

Returning more diagnostic information.

Listing 17.20: si5351a_calc-373
373//
374// The MSx_DIVBY4 [1 : 0] i s s e t to ZERO
375// because we are opera t ing below 150MHz
376// (144MHz to 148MHz)
377//
378ms_values [RFZERO_MSX_DIVBY4] = 0 ;

We are operating in the 2M band, well above the point where the divider in the clock output
block would be needed, so it gets forced to zero.

Listing 17.21: si5351a_calc-379
379//
380// An f i n a l l y , pass the i n t e g e r feedback
381// d i v i s o r we d i s cove r ed at the beg in ing .
382//
383s t s = abcdef [FB_DIV] ;
384//

Diagnostics.

Listing 17.22: si5351a_calc-385
385} e l s e {
386ms_values [RFZERO_MSNx_P1] = 0 ;
387ms_values [RFZERO_MSNx_P2] = 0 ;
388ms_values [RFZERO_MSNx_P3] = 0 ;
389ms_values [RFZERO_MSx_P1] = 0 ;
390ms_values [RFZERO_MSx_P2] = 0 ;
391ms_values [RFZERO_MSx_P3] = 0 ;
392ms_values [RFZERO_RX_DIV] = 0 ;
393ms_values [RFZERO_MSX_DIVBY4] = 0 ;
394s t s = 0 ;
395}

The beginning of the block is one line 342. If the target VCO frequency we calculated is out of
range, pass all zeros back.

306

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 17.23: si5351a_calc-396
396re turn s t s ;
397} // kc0j fq_setup ()

Return the divisor we planned to stick into the MS0..MS0 Multisynth.

17.2 ICS307

Insufficient stock on hand to fabricate the 102-73181-0 boards. No additional documentation at
this time.

par

17.3 ICS525

Small stock of the ICS525 on hand to fabricate a few additional 102-73161-25 boards. The zNEO
in the 80-pin package, however, is near impossible to find.
Existing 102-73161-25 boards will be supported with this software release.

The Renasas parts (ICS307 and ICS525) are very limited in the frequencies in the 2M band they
can generate. A large number of generated frequencies fall between the 5KHz channels that a
typical HT can deal with.

307

ICARC FOX Transmitters: 102-73181 KC0JFQ

308

Chapter 18

Assorted Interesting Topics

This section deals with topics that don’t fit nicely into the above sections.
Somewhat of a F.A.Q. if you will...

18.1 102-73161-12 Transmitter Configuration

The transmitter may be built in of several configurations. The 102-73161-12 board has a
MAX2602 NPN transistor to provide a bit of gain. The ICS525 alone provides about 20mW of
output. There are also a pair of patch boards that can be installed in place of the MAX2602 to
provision with a MMIC type amplifier or a simple plastic package NPN transistor in SOT23.

18.1.1 102-73161-12 Transmitter Configuration, Low Power

R31, C69, Q2, L1, L4, L5 and L7 are unpopulated. A haywire is then installed from the input
side of L4 (near U2) to the output side of L7 (near L33). This bypasses the RF amplifier and its
matching altogether.

This is the lowest power mode to configure the transmitter in.

18.1.2 102-73161-12 MAX2602
R31 is still unpopulated , C62, C67 and R12 are installed.

This is the configuration as originally designed.

18.1.3 Transmitter Configuration, MMIC
Applies to -12 artwork;
C21, C57, L4, L5, and Q2 are unpopulated. The MMIC patch board is installed on to the main
board. L4 and L1 are then installed to connect the patch board to the main board. C21 and the
MMIC can then be installed.

309

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.1.4 Transmitter Configuration, MMIC
Applies to 102-73161-21 and 102-73161-23 daughter boards for the 102-73161-25 and 102-73181
artwork;
These are daughter boards for the -25 ma inboard. These have input and output matching net-
works which should not be required.
These board also have attenuators at the input to the MMIC to set the input level as needed.
They are in the from of a PI network to maintain 50Ω impedance.

18.1.5 102-73161-12 Amplifier Patch Board, NPN in SOT23 package
This is a (failed) attempt to patch in an simple NPN transistor in place of the MAX2602.
C21, C57, L4, L5, and Q2 are unpopulated. The MMIC patch board is installed on to the main
board. L4 and L1 are then installed to connect the patch board to the main board. C21 and the
transistor can now be installed.

18.2 102-73161-12 Frequency Selection

Frequency Selection is dependent on the specific VCMO selected for use with the unit and the
control voltage applied to the VCMO to modulate the carrier.
The preferred VCMO is the SiTime SIT3701AC-13-33C-24.xxxxx which has a tuning range of
+/- 60PPM. Typically the +/-120PPM part is found on DigiKey which requires changing R44 or
R47 to a larger value.

18.3 102-73161-25 Frequency Selection

Crystals added to the -25 artwork to eliminate the need to deal with the surface mount oscilla-
tors. The clock generator crystal has varicaps to push the crystal frequency. The same 20MHz
crystal may be used for both the NEO and the ICS525.

To allow the variable oscillator to settle close to it nominal frequency, select crystals that expect
to see a higher load capacitance.

18.4 Garbled Audio
If you encounter what sounds like noise or garbled audio consider that the FLASH loading pro-
cess does not check for existing data before starting a programming cycle.
If you reload the FLASH memory or append new audio to existing audio and overwrite data sev-
eral issues can occur.
Also keep in mind that you will typically manage the TALK= directory seperately from the au-
dio waveform data. A mis-match here can cause problems.

18.4.1 Missing Load (Empty FLASH)
If audio data is missing, all you get is silence as the nominal file image has RIFF/WAVE head-
ers the describe the sample rate, sample width, and sample count. With no header, and no addi-
tional information in the TALK= directory entry, all that occurs is the handler returns immedi-
ately and the sequencer continues on with the next command in the sequence.

310

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.4.2 Overwritten RIFF/WAVE Headers

If you forget to erase the FLASH prior to loading, you may hear silence when the RIFF/WAVE
header data is damaged. If the header key ("RIFF" in the first 4 bytes pointed to in the TALK=
directory, you will get silence. If the sample rate or sample count fields are corrupt you may hear
garbled audio or no audio at all.

18.4.3 Overwritten Waveform Data
Another side-effect of failing to erase the FLASH prior to loading, where only the data area has
been overwritten, is garbled audio. This is data dependant and you may hear audio under a high
noise floor. You may hear random noise.

18.4.4 Mismatched TALK= Directory
Since the TALK= directory is stored in the file that is loaded into the FRAM, you may get the
TALK= directory out of sync with the waveform data.

18.5 Corrupt Sequences

You may find that some sequences seem to have been corrupted. This may be a side-effect of
having a small FRAM device installed.
If you are loading a comprehensive set of sequences, such as multiple operating sequences, into an
FRAM that is too small, some of the sequence will be lost. Needless to say, if there is not ade-
quate room in the FRAM for the size of the load it won’t work too well.
The transmitter log seen in section 16.9 on page 290 shows FOX24 has been fabricated with a
relatively small FRAM. This 64KB device holds 256 records and the image loaded into FRAM is
286 records (about 73Kb), too large for the 64Kb device.
To allow this unit to fully operate as a member of the hunt group that consists of
FOX21..FOX26, the external frequency table has been limited to 25KHz steps (rather than 5KHz
steps). This doesn’t affect group operations as the 25KHz channel step covers target frequencies
while leaving the sequences available to the group untouched. The records we may want to alter
are also left in the same position as the other units as the external frequency table is loaded at
the end of the FRAM.

18.6 Lost Sequences
You may find that some sequences seem to get lost when running multiple sequences. This will
occur when the timing characteristics are not correctly taken into account.
The processor in the Fox Transmitter is not running a real-timer O/S, rather it is a simple loop
that checks for work that needs to be done every 100 milliseconds. When the starting point for a
schedule occurs, that particular schedule is run to completion. Any other schedules that should
have run when this schedule is running will be ignored.
The solution, of course, is to carefully time these schedules to execute serially. Parallel execution
is not supported (and that notion doesn’t make sense).
Correctly timing the master schedule takes advantage of the behavior to suppress time update
messages during message traffic. To achieve this, simply have the MAS schedule offset set to 5
and the other schedules start at 0.

311

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.7 Notes on the use of the Network Port

The network port is provided as a quick means of locking multiple units together in the field.
Time synchronization is also achieved using the flash memory loading utility.
Units may have their time set using the flash memory loading utility the night before a fox hunt
to eliminate the need to have interconnect cables the day of the hunt. The TOY clock will keep
track time to within a few seconds per day which should be close enough for fox hunt operations.
The original plan was to be able to synchronize time in the field. This time networking feature
has been deprecated as it was never practical in the field. Furthermore the serial port used to
configure the transmitter was moved to the 3.5mm jack that is externally accessible.

18.8 Prosigns

How do you go about creating a prosign?.
A prosign is a group of letters that are run together. These are typically shown with an over-
bar in various documents. They consist of several letters strung together with abnormal inter-
character timing.
You have control over the timing characteristics using the CWPM command. Nominally the
timing weights are 1, 3, 5, and 7 as discussed in the section above. Altering these timing weights
to 1, 1, 5, 7 will, in effect, turn subsequent letter groups into prosigns.
This will probably require breaking the message up and interspersing the CWPM commands to
switch timings. The effect of the CWPM command is immediate, making control as described
possible.

18.9 Code Speed of the ID message

Some of the examples have messages at wildly varying word rates. This may make it difficult to
identify individual stations. To address this, the examples send the ID message at the beginning
and end of a transmission at 20 words-per-minute. The speed of the message content may then
change to any desired rate.
One of the examples varies the word rate throughout the message, starting out a 35 WPM and
ending at 15 WPM. Variations on this are straightforward to sequence (see the CWPM command
on page 187).

18.10 External Transmitter Control

The external transmitter control feature shares the audio tone generator with the internal trans-
mitter. Should you choose to key the internal transmitter at the same time as the external trans-
mitter, you are stuck with the same tone on both. Driving them at different time, however, you
are free to alter the audio pitch as desired.

312

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.11 External Transmitter Serial Control

No control software is present to deal with controlling an external transmitter. There is, however,
diminishing room in the zNEO program flash to implement such control.
The network port can be used for such control if the radio can deal with logic level (i.e. 3.3 Volt)
signals. As built the network port presents levels seen at the UART pins on the zNEO package.
This polarity is opposite of that send on an RS232 interface. In other words, the line idles high,
at 3.3V. A start bit is represented as 0V.
The polarity if controlled by U5, which is normally populated with a 74LVC2G07 which is an
open drain bob-inverting buffer. This device could be switched for a 74LVC2G14 which is the
inverting gate without the open drain. The transmit channel and receive channel must, then, be
kept separate. R13 and R14 may need to be replaced with small value capacitors to shunt any
RF pickup (so keep the interconnect short and shielded).

18.12 Controlling Deviation

The following applies directly to the -25 revision boards.
Deviation Control uses two pins on the zNEO, one is an enable and the other is the output of
Timer 0. The timer should be programmed to generate a square wave at the desired audio fre-
quency and left running continuously. zNEO pin PA0 is the used to gate the clock through a tri
state buffer. When the buffer is tri-state, the termination network R10/R11 should be configured
to set the clock at its nominal frequency. Gain is set by R47 and R10/R11. The gain should be
selected to limit the deviation to what the receiving station can handle, typically limiting the RF
output deviation to 2KHz.
R47/R44 and C51 form the audio low pass filter. It removes the high frequency content from the
square wave supplied by the zNEO.
The tri-state buffer, U10, attempts to center the carrier on the nominal transmit frequency.
When generating a tone the carrier is modulated about the center frequency. Lacking the tri-
state buffer, the modulation would occur only above or below the carrier.

18.13 Battery Check

Assuming you are using an announce message similar to the example in section 19.1.6 on page
324, you should hear a battery report as part of the sign-on message. Keep in mind that all
transmitters should normally be be configured to use a single sign-on reporting frequency. Cy-
cling power will cause the system to start by running the INI= commands followed by the
ANN= commands.
The ANN= commands should include a battery report, either in code, encoded, or as a plain
voice report (depending on your specific configuration). If in doubt about the status of a unit, a
simple cycling of the power switch should let you know if the unit is working.
The internal TOY clock will keep the unit synchronized with all other units. There should be no
need to worry about time synchronization if the TOY clock is working.

313

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.14 Alternate Battery Configurations

In general, the author has foud that using disposable batteries pro-
vides the most convenient mode of powering the Fox Transmitters.
In particular, when setting up a large skulk (skulk is the name for a group
of foxes), replacing batteries is far less time consuming than trying to man-
age rechargeable cells. As of April 2025, I haven’t found a lithium chem-
istry battery pack that will fit in the case that wouldn’t require charging
before each and every event. With 18 or more transmitters, it is time con-
suming enough to simply connect each unit to the host computer to update
the TOY clock.
If you would like to make use of rechargeable cells, there are some features
present on the all revisions of the board to allow connecting a charge port.
Near the ON/OFF switch (SW2) is an unpopulated connector, J7, that gives you access to the
batterys when the unit is switched off. This is the same connector series as the one in the J2 po-
sition used to connect the battery pack. The mating connector locks in to both the right-angle
(J2) and the vertical (J7) connectors.
When the unit is switched off J7 and J2 are connected to provide a charge path.
For an external charging jack, there are a few 2.5x5.5 bulkhead mount connectors found on
DigiKey.

Vendor Number Hole Mount
Same Sky PJ-011B 13mm mounting hole rear mount
Same Sky PJ-065B 5/16" mounting hole rear mount
GlobTek JACK-L-PANEL-8A(R) 11.2mm mounting hole front mount

Tensility Int. 54-00064 11mm mounting hole front mount
Switchcraft 712A 11mm mounting hole rear mount
Switchcraft L712A 5/16" mounting hole rear mount

Table 18.1: CONN PWR JACK 2.5X5.5MM SOLDER

Parts with the rear mount designation can be assembled on the bench and then installed into the
enclosure.
Parts with the front mount designation must be assembled in the enclosure. Make sure you have
any washers and the nut slipped on to the cable before assembly.

Also note that the J7 pinouts match the J2 pinouts. These connectors use identical mating con-
nectors and swapping them around will not cause a problem, other than switching the ON and
OFF/CHARGE positions for the switch.

314

ICARC FOX Transmitters: 102-73181 KC0JFQ

18.14.1 Higher Voltage Packs
You may choose to employ higher voltage packs. A 3-cell lithium pack, operating at about 11
volts, can be employed by changing the voltage monitor resistor R35. Consult the schematic and
review the coefficients tables (BATR I) to select an appropriate value for R35.
Using higher voltage packs will nominally be OK as long as you are using only regulated 5 volts
on the RF daughterboard, and you don’t exceed the maximum input voltage rating of the first
stage regulator. Keeping the nominal pack voltage below 24V should work well with all of the
available switchmode regulators.
Some of the 5 volt regulator parts will accomodate up to 36 volts.

The SI3865 power switch in position U91 only allows for the use of up to a 12V battery. U81
switches the regulated 5 volt line so is never a problem. U91, however, should not be populated
if you plan to exceed the parts 12 volt rating.

If you can find it, an SI3861 will accommodate up to 20 volts and is pin compatible. This is an
obsolete part and will not generally be available.

If you are using an RF amplifier that runs directly off of the battery, and plan to use a higher
voltage pack (for higher RF output levels) power switching needs to move to the the RF amplifier
daughterboard and the switch at U91 would need to be bypassed.

18.15 Universal Setup Pitfalls

The examples in section 19.1 on page 317 provide commanding for both the SI5351 RF clock and
the DRA818/SA818 tranceiver modules. When using the SI5351, the DRA818 configuration se-
lection must be erased. The latest RF generator selection encountered controls the execution
path within the zNEO.
An incorrect selection (i.e. you forget to remove the DRA818 configuration entry after loading
FRAM) will result in a rather spectacularly non-functional fox transmitter. Check that you up-
dated the INI= section in the FRAM. When using the SI5351 in particular, "EDMP 818" and
then "ERAS nn" the DRA818 configuration record .
Do not make the mistake of using EZER nn to zero the record as this will render everything
after that record inaccessible until the next ESAV command rewrites that record. The "ERAS
nn" rewrites the record with a MT** command.

18.16 Nulla malesuada

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, li-
bero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing
semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, mole-
stie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum.
Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim.
Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Do-
nec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus
eu enim. Vestibulum pellentesque felis eu massa.

315

ICARC FOX Transmitters: 102-73181 KC0JFQ

316

Chapter 19

Actual FOX configuration
commands

This is a listing of the setup commands for the prototype units.
Lines without the esav are not placed in FRAM.

Updates in the fox operating software and the support utilities provide for command argument
substitution. This should feel familiar to a bash shell user.
Parameter substitution is used extensively to allow one set of configuration files to be used to
load multiple hunt groups with multiple units in each group.
First order substitutions change the nickname, operating frequency, and operating schedule for
each unit. Some additional substitutions alter the files that are included by the main file to fur-
ther accommodate the diverse set of transmitters we deal with here.

19.1 FOX2X_KC0JFQ setup scripts

This is the current master setup for all of the ICARC FOX transmitters. The fox_simple utility
has some features/additions to make sharing these fox scripts a bit easier.
Every effort has been made to keep the commanding identical to the previous software version to
avoid obsoleting old scripts.

With the introduction of the V4.0 software (that provides a high speed binary loading protocol),
we are moving all setup commands into the FOX2X_KC0JFQ.fox setup. This allows a com-
plete log of the commands that are to be downloaded into the target to appear in the log file
The log file can then be used to perform a fast load of the FRAM. This improves load speed dra-
matically.

317

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.1 FOX2X_KC0JFQ.fox

Listing 19.1: FOX2X_KC0JFQ
1REM− 67890123456789012234567891
2esav REM− . / ’ fox_simple ’
3esav REM− −S ’ usb ’
4esav REM− −F ’ f i l ename ’
5esav REM− ’ fdate ’
6#
7#
8# /home/wtr/Radio/halo_term/ fox_simple
9# −fFOX2X_KC0JFQ. fox −lFOX2X_KC0JFQ. log
10# −Xchrp1=6,0 −Xchrpfrq =1.0
11# −Xsched=S0 −Xtone=1.0
12# −Xstooge=120 −Xchirp_up=0
13# −Xchirp_dn=0 −Xruns6 =600 ,300
14# −Xsynth_dev=SI5351 −Xsynth_set1=8MA
15# −Xsynth_set2=CLK0 −Xta lk _f i l e=talk_73181_rxxk . fox
16# −Xsx_stooge=SX_STOOGE. fox −Xspare1=not
17# −Xspare2=used −Xbatvc=BATV
18# −CW0JV −NFOX24
19# −R360 ,180 −Q144 .285 −Afreq_5351 −08. fox
20#
21# /home/wtr/Radio/halo_term/ fox_simple −SFOX2X −c−50 −t10 −f /home/wtr/WAV/

↪→ fox_73181_rxxk . hex
22# /home/wtr/Radio/halo_term/ fox_simple −b115200 −SFOX2X −c50 −t10 −f /home/wtr/WAV

↪→ /talk_73161_rxxk . hex
23#
24# /home/wtr/Radio/halo_term/ fox_binary −F −S FOX2X −a /home/wtr/WAV/

↪→ talk_73181_2025_TREK . hex
25# /home/wtr/Radio/halo_term/ fox_binary −F −S FOX2X −f FOX24_KC0JFQ. log
26#
27#

Header lines, that document what we’re up to in this fox script.
All these comments are used as sample command lines for all the fox transmitters used by the
Iowa City club. A simple cut and paste from here is used to load the individual transmitters.

Comments on lines 2 through 5 are inserted into the FRAM to provide documentation of the file
used to load the station and the last modification date on the master file.
All four of these comments use substitutions to send useful information to the fox system.

Line 2 substitutes in the program name for the ’fox_simple’ string.
Line 3 subs in the serial device nickname used to load the fox system for the ’usb’ string.
Line 4 subs in the filename (i.e. FOX2X_KC0JFQ.fox) for the ’filename’ string.
Line 5 subs in the file modification date for the ’fdate’ string.

We can also insert the current date using a ’date’ substitution string.

318

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.2: Load External Frequency Table
132#
133# Move the f requency setup to end o f setup so we
134# don ’ t have to search so long f o r other s t u f f
135#
136#inc lude ’ o f f _ f i l e ’
137#inc lude ’ fm_fi le ’
138#inc lude ’ iaru_80m ’

The ’off_file’ substitution requires the offset table to be named in the controlling shell script.
This load occurs after the TALK an operating commands are loaded (observe the line numbers
from the source file).

With the V3.72 update, the frequency table is external. This increases the size of the table so we
move it down towards the end of the FRAM file system. We move it toward the end to minimize
command search time when executing the fox message sequence.
A sample of the included table is found in section 19.3 on page 331.

The 4.07 release adds the capability to operate in the 88-108MHz FM band. Line 137 inserts a
table to configure the SI5351 for operations in that band.

Listing 19.3: Enable TOY Clock
139#
140# Make sure c l o ck i s c o r r e c t l y con f i gu r ed ! ! !
141#
142TOYC NONE

Here we disable the charging features of the DS1672. They are not needed as we have an external
battery maintenance circuit.

The audio file system, line 33, is nominally identical on all units, although one or two have s
small FLASH device, somore than one variant is needed. Audio clips are present in the audio file
system for all unit nicknames to allow for the use of a common audio file.

The include directives (lines 33 and 230) tells fox_simple to insert the talk directory and supple-
mental frequency table at those points. This is a convenience for us in managing files. A com-
mand file can be inserted anywhere it is needed.

Also note the tickling of the TOY clock at line 43 and 45.
This serves to force the DS1672 into a normal operating mode. This command must be issued
after the DS1672 has first been powered up. This enables the oscillator so that it will continue to
track time when power is removed.
Sending the command will not cause the DS1672 to stop operating, so it may be issued without
hazard here.

319

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.2 FOX2X_KC0JFQ TALK Directory Include

Listing 19.4: FOX2X_KC0JFQ_29
29#
30# Limited vo i c e s t o rage
31#
32# //#inc lude talk_73181_1 . fox
33#inc lude ’ t a l k _ f i l e ’
34#

The controlling shell script is expanding to load most units in the ICARC fleet. To that end the
older units that lack a FLASH memory to hold audio waveform data need this ’talk_file’ substi-
tution to allow loading an very abbreviated TALK directory.
The TALK Directory file may is found in section 19.2 on page 327.

320

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.3 FOX2X_KC0JFQ INI=
This INI= sequence is run when zero or one of the TEST/MAS jumpers are installed.

Listing 19.5: FOX2X_KC0JFQ-INI
35#
36# Tick l e the DS1672 , i f i t doesn ’ t respond
37# we ’ l l h i t i t again l a t e r .
38# I f i t d o e s respond , the 2nd . time we read
39# i t w i l l g ive matching time , so no f o u l . . .
40# Our Epoch i s CDT: −5 Hours from Zulu
41# Set system time from DS1672
42#
43esav INI=TIME
44esav INI=WAIT 0 .5
45esav INI=TIME
46esav INI=EPOC −5.0
47esav INI=NAME ’name ’
48esav INI=CALL ’ c a l l ’
49#
50#esav INI=CONF BMON 12.5V
51esav INI=CONF ’ synth_dev ’
52esav INI=CONF ’ synth_set1 ’ ’ synth_set2 ’
53#esav INI=CONF DRA818
54esav INI=CONF ’ spare1 ’ ’ spare2 ’
55esav INI=FREQ 144.150
56esav INI=BATR
57#
58# Set schedules , l e a v i n g ONLY
59#
60REM− 0123456789012345678901234567890
61esav INI=MODS S0 ’ run ’
62esav INI=MODS S1 ’ run ’
63esav INI=REM− MODS S2 ’ run ’
64esav INI=REM− MODS S3 ’ run ’
65esav INI=REM− MODS S4 ’ run ’
66esav INI=REM− MODS S5 ’ run ’
67esav INI=MODS S6 ’ runs6 ’
68esav INI=MODS S7 ’ run ’
69esav INI=MODS S8 360 ,0
70esav INI=MODS S9 360 ,15
71esav INI=STAT
72#

Using the fox_simple utility, we substitute for the ’name’, ’call’, and ’run’ keys. This moves the
unit-specific tailoring to the fox_simple utility so the FOX2X_KC0JFQ.fox file is the same for
all of the 102-73181-xx fox transmitters.
The TIME command, lacking any arguments, simply copies the hardware clock into the sys-
tem clock. It is issued twice to overcome an issue with the DS1672 operating correctly when first
queried. The TIME, WAIT, TIME gets the DS1672 working and loads the time into the sys-
tem reliably.
Our transmitter is now running on truncated UT (within a second or two of all the other fox
transmitters).

321

ICARC FOX Transmitters: 102-73181 KC0JFQ

The EPOC command sets the local timezone offset for Central Daylight time (5 hours before
ZULU).
Assuming you are creating schedules that evenly divide into sixty minutes (i.e. no remainder),
the EPOC offset does not affect operation.
Simply put, all transmitters must run with the same EPOC offset.

And on to the CONF commands. This setup is used in testing so we play some games to allow
things to change without having to reload the FRAM. The CONF ’synth_dev’ will be substi-
tuted with CONF SI5351 for the 102-73181-10 boards. We also configure the SI5351 output
by changing the The CONF ’synth_set1’ ’synth_set2’ to be CONF 8MA CLK0. The
CONF ’spare1’ ’spare2’ line may be overwritten (after loading) with CONF DRA818 to
easily switch to that RF subsystem. The CONF SI5351 and CONF 8MA CLK0 become su-
perfluous for the DRA818 and are effectively ignored (no harm, no foul).

When we are using the SI5351, the CONF 8MA CLK0 enables the CLK0 output and sets the
drive strength to, in effect, full. This provides a clock to any of the 102-731*1-28 low power am-
plifier daughter board. The RF clock is delivered directly from the SI5351 on the motherboard to
the amplifier board. Selecting 8MA provides a 50Ω output impedance from the SI5351.

More substitution occur in the CONF commands to deal with the older fox transmitters in
the fleet. With the older transmitters we will substitute in CONF ICS525, CONF VOICE
FRAM and a CONF BMON 73161 commands to configure for the 102-73161-25 boards. We
also have the BATR command that reports the idling current after the CONF BMON com-
mand so we get a correct battery voltage reading.

The next step is to select the transmitter frequency. The selection here is the common setup fre-
quency, not the target operating frequency.

The fox transmitter will send an aliveness message when it is powered on to allow the setup oper-
ator to hear that things are, indeed, working during hunt setup.

We will switch to our operating frequency at some later time.

More-or-less the final step is to set the operating schedule. Each transmitter will run with the
same cycle time, but with a different offset. The offsets begin spread evenly through the specified
period.

If you have set things up correctly, the message transmission time fits within the allotted period.

The schedule, being unique for each unit, is set through the substitution feature of the
fox_simple utility.

322

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.4 FOX2X_KC0JFQ TEST sequence
This TEST may be used as the operator sees fit. As shown, the TEST jumper will configure the
SI5351 to deliver the crystal oscillator (20MHz) directly to the CLK1 pin to be used as a clock
source for an external project.

Listing 19.6: FOX2X_KC0JFQ_TEST
74#
75#
76esav TEST=FREQ 144.100
77esav TEST=BEGN, SILENT
78#esav TEST=5351 ,XTALT
79#

This TEST= sequence is run when the TEST jumper is in place. The INI= sequence is run
before the TEST= sequence is run.

If everything goes wrong, both the TEST= and MAS= jumpers may be installed to force the sys-
tem into recovery mode to clear and reload the FRAM as required.

19.1.5 FOX2X_KC0JFQ MAS sequence
This MAS may be used as the operator sees fit. If everything goes wrong, both the TEST= and
MAS= jumpers may be installed to force the system into recovery mode to clear and reload the
FRAM as required.

Listing 19.7: FOX2X_KC0JFQ_MAS
79#
80#
81#inc lude master_2025 . fox
82#
83#

This MAS= sequence is run when the MAS jumper is in place. The INI= sequence is run be-
fore the MAS= sequence is run.

323

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.6 FOX2X_KC0JFQ ANN=
This ANN= sequence is run after the INI= sequence when no jumpers (TEST or MAS) are
installed. This is the station aliveness and status message.

Listing 19.8: FOX2X_KC0JFQ_ANN
84#
85# We’ re making use o f the <CALL> and <NAME> s u b s t i t u t i o n
86# i n s i d e the fox t r a n s m i t t e r ! ! !
87#
88esav REM− fox_ann_V2025 . fox
89esav ANN=TONE 1.0
90esav ANN=CWPM 30,−1,−1,−1,−1
91esav ANN=BEGN
92esav ANN=BATR
93esav ANN=TALK <CALL>
94esav ANN=TALK <NAME>
95esav ANN=WAIT 1 .0
96esav ANN=’batvc ’ V 7 .2
97esav ANN=’batvc ’ I
98esav ANN=TIRP ASN
99esav ANN=WAIT 0 .3
100esav ANN=TALK ’ freqM ’
101esav ANN=TALK ’ freqK ’
102esav ANN=TONE 1.0
103esav ANN=CWPM 30,−1,−1,−1,−1
104esav ANN=DONE
105esav ANN=FREQ ’ f req ’
106esav ANN=STAT
107esav ANN=RUN0 ’ sched ’
108#

We make use of the ’freq’ substitutions here to set the operating frequency. We have also moved
the selection of the active schedule (i.e. the ’sched’ substitution) to the shell script to avoid the
need to edit the fox file or alter it directly in the fox transmitter.

The basic setup for operation on lines 90 and 91. The audio CW tone is set on line 90 and the
chipping rate on line 91. This setup would typically have a rather fast chipping rate to reduce
on-air time as we drop transmitters off for the hunt.

The BEGN command enables the transmitter and send out a CQ call using the station callsign
previously stored by the CALL command .
We then proceed to verbalize the callsign and nickname for the setup operator to verify the cor-
rect station is being dropped.

The BATR command serves to provide a battery report when transmitting for logging in the
fox_label.csv file (see section 16.9 on page 290) before the hunt. The BATV commands verbally
report the voltage and current for the transmitter, again so the operator can be confident the fox
transmitter will remain functional throughout the hunt.
We could use the BATC command to report about battery condition using code. BATC reports
in plain code using numbers or it may encode the voltage or current as a series of Ts and Es; Ts
are volts and Es are tenths.

324

ICARC FOX Transmitters: 102-73181 KC0JFQ

The TIRP command is introduced into the V4.06 software release. This command produces a
time report to allow the TOY clock to be audibly inspected. This command synchronizes with
the system clock on a 5 second boundary and emits a short tone. The tone is sent at the current
audio frequency but the duration is fixed in the TIRP command (i.e. unaffected by CWPM
settings).
CWPM settings). Bring up a clock (with a seconds display) on a GPS or cellphone when power-
ing on the Fox Transmitter. When the TIRP command sends the beep, compare it with the refer-
ence clock. Use the beep to determine if the Fox Transmitter is running fast or slow.

The DONE is used to finish up a message transmission. The station callsign is again sent in a
short SK message to keep the transmitter in compliance with the rules.

After that message is sent the transmitter will go quiet. Power is removed from the daughter
board.
The station is now quiet, and the frequency is changed to the operating frequency. Assuming no
additional frequency setting commands occur, the transmitter parameters are set.

The last command in the announce message is to enable schedule zero. This may be the only
schedule loaded into the system in this example, so we issue the command to enable the sched-
ule.

The transmitter now looks at the current time and the schedule table once per seconds waiting
for the appropriate time to deliver the scheduled message.

325

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.1.7 FOX2X_KC0JFQ sequence includes
The individual message sequences have been moved to individual file to allow for easier updates.
Those sequences are included into this document, so externalizing them reduces changes to the
FOX2X_KC0JFQ.fox file and keeps the included file line number more static.

Listing 19.9: FOX2X_KC0JFQ 108
108#
109# ICARC p r o t o t y p i c a l opera t ing s c e n a r i o
110#
111#inc lude FOX2X_S0. fox
112#
113# Formal FOX hunt sequences
114# r e p l a c e s S1= through S5=
115#
116###inc lude S_MOxx. fox
117###inc lude S_sprint . fox
118#
119# Other fun s c e n a r i o s
120#
121#inc lude FOX2X_S1. fox
122#inc lude FOX2X_S2. fox
123#inc lude FOX2X_S3. fox
124#inc lude FOX2X_S4. fox
125#inc lude FOX2X_S5. fox
126#inc lude FOX2X_S6. fox
127#inc lude FOX2X_S7. fox
128#
129# A b i t o f l e v i t y
130#
131#inc lude ’ sx_stooge ’

Added in late May of 2025 are IARU compatible operating scenarios. We have both a standard
schedule where each transmitter is allocated one minute out of 5 and a sprint schedule where4
eah transmitter is allocates 12 seconds out of eacyh minute.
The standard schedule emits the standard station identification at the begining and end of each
message. The word rate for the ID is a bit faster at 20 WPM.
The sprint schedule emits only the station callsign at the begining of the message. The station
callsign is sent at 20 WPM. The message rates vary to allow 3 repetitions of the hunt identifier in
each on-air segemnt.
The IARU scenario replaces the S1=..S5= sequences and requires editing the
FOX2_KC0JFQ.fox file to remove FOX2X_S1.fox through FOX2X_S5.fox and in-
sert either S_MOxx.fox or S_sprint.fox.
Also note that CODE <CALL> and CODE <NAME> will not be properly substituted
with the actual callsign and nickname prior to version V4.09.
As shown in the example the S_MOxx.fox and S_sprint.fox includes, with the extra "##",
aren’t loaded. And and remove the "##" as needed.

326

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.2 TALK Directory file
This is a list of the audio clips that are loaded into FLASH memory. This assumes that software
version V3.27 or later is loaded into the fox transmitter. Sample rate and sample count are ex-
tracted from the RIFF/WAVE header located at the specified address.

Listing 19.10: talk_73181_2025_TREK.fox
1esav ID=FL talk_73181_2025_TREK . fox
2esav ID=FL 2025−06−03T14 : 2 0 : 2 7
3esav TALK=KC0JFQ 0
4esav TALK=W0JV 5760
5esav TALK=FOX20 11904
6esav TALK=FOX21 14848
7esav TALK=FOX22 19072
8esav TALK=FOX23 23424
9esav TALK=FOX24 28672
10esav TALK=FOX25 33408
11esav TALK=FOX26 39552
12esav TALK=FOX27 44544
13esav TALK=FOX28 49152
14esav TALK=FOX29 53632
15esav TALK=FOX30 58624
16esav TALK=FOX31 62464
17esav TALK=FOX32 67200
18esav TALK=FOX33 72064
19esav TALK=FOX34 77696
20esav TALK=FOX35 83328
21esav TALK=FOX36 88832
22esav TALK=FOX37 94208
23esav TALK=FOX38 99328
24esav TALK=FOX39 103552

These are the callsign and nickname voice clips.
The filenames must match what appears on the TALK command; this is a simple string match
operation!

Note that verbalizations for all units nicknames is stored in every unit. This makes audio file
management simpler and there is plenty of FLASH available.

327

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.11: talk_73181_2025_TREK.fox_25
25esav TALK=BATTI 108928
26esav TALK=BATTV 113152
27esav TALK=REG5 117632
28esav TALK=POINT 122752
29esav TALK=V_HZ 124160
30esav TALK=V_KHZ 126592
31esav TALK=V_MHZ 129792
32esav TALK=V_N0 132992
33esav TALK=V_N1 135680
34esav TALK=V_N2 137472
35esav TALK=V_N3 139648
36esav TALK=V_N4 141568
37esav TALK=V_N5 143488
38esav TALK=V_N6 145664
39esav TALK=V_N7 147456
40esav TALK=V_N8 149376
41esav TALK=V_N9 150912
42esav TALK=V_MAMP 153344
43esav TALK=V_VOLTS 157056

Here are the battery reporting verbalizations.
The filenames must appear as shown as the filenames are fixed in the zNEO code.

Listing 19.12: talk_73181_2025_TREK.fox_44
44esav TALK=V_F144 160128
45esav TALK=V_F145 164864
46esav TALK=V_F200 170880
47esav TALK=V_F225 176640
48esav TALK=V_F250 182656
49esav TALK=V_F275 189056
50esav TALK=V_F300 194944
51esav TALK=V_F325 200832
52esav TALK=V_F350 205568
53esav TALK=V_F375 210176
54esav TALK=CHIRP_UP 214656
55esav TALK=CHIRP_DN 216704
56esav TALK=CHIRP_UPDN 218752
57esav TALK=FD_W0JV 222848

Here are the frequency reporting verbalizations. Use the same pattern to add more if you operate
on frequencies not listed.
The filenames must appear as shown as the filenames are fixed in the zNEO code.

Lines 65 through 67 are the audio emulation of a RADAR chirp.

CHIRP_UP Ascending frequency audio tone
CHIRP_DN Descending frequency audio tone
CHIRP_UPDN Both of the above

328

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.13: talk_73181_2025_1.fox_58
58esav TALK=FD_FOX 272512
59esav TALK=FD_GAZELLE 285824
60esav TALK=FD_CATCH 295296
61esav TALK=FD_TUNA 304384
62esav TALK=FD_SILLY_8K 314624
63esav TALK=TS1_LA 326016
64esav TALK=TS1R_LA 335872
65esav TALK=TS2_NY 347520
66esav TALK=TS2R_NY 356864
67esav TALK=TS3_SING 367616
68esav TALK=TS3R_SING 376960
69esav TALK=TS4_BOSTON 386688

And now we get on with the silly business.

Lines 58 through 62 are nonsense utterances:

FD_FOX I am a Fox
FD_GAZELLE I am a Gazelle
FD_CATCH Catch me if you can
FD_TUNA I am a tuna-fish sandwich
FD_SILLY_8K This is getting too silly

Lines 63 through 69 reproduce an old 3-stooges sketch:

TS1_LA You are now in Los Angeles
TS1R_LA I am now in Los Angeles
TS2_NY You are now in New York
TS2R_NY I am now in New York
TS3_SING You are now in Sing Sing
TS3R_SING I am now in Sing Sing
TS1_BOSTON You are now in Boston

Listing 19.14: talk_73181_2025_1.fox_70
70esav TALK=2K1_H_9000 395264
71esav TALK=2K1_GD_EVE 415616
72esav TALK=2K1_CHESS2 427264
73esav TALK=2K1_ENJOYA 439552
74esav TALK=2K1_JUST_MOM 447616
75esav TALK=2K1_MSG_4_U 471168
76esav TALK=2K1_MSG_REP 476544
77esav TALK=2K1_IGNIT 486400
78esav TALK=2K1_DANGER 494208
79esav TALK=2K1_FOOLPROOF 502400
80esav TALK=2K1_HUMAN_ERR 529408

329

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.15: talk_73181_2025_1.fox_81
81esav TALK=TREK_ABSORPT 556032
82esav TALK=TREK_AYE_SIR 576640
83esav TALK=TREK_ENERGY 587392
84esav TALK=TREK_GREETIN 622848
85esav TALK=TREK_HAILING 634752
86esav TALK=TREK_MCCOY_ 642432
87esav TALK=TREK_QUESTION 655360
88esav TALK=TREK_SQRE_NOST 692096
89esav TALK=TREK_SQRE_UNUS 707072
90esav TALK=TREK_YELLOW 726528
91esav TALK=SHRK_WDY_CLP 754944

Line 91 is from Toy Story:

SHRK_WDY_CLP Look, I’m Woody! Howdy, Howdy, Howdy.

Listing 19.16: talk_73181_2025_1.fox_92
92esav TALK=HEY_LARRY 766208
93esav TALK=HEY_MOE 769920
94esav TALK=SORRY_MOE 772864
95esav TALK=CURLY_THINKS 780544
96esav TALK=BIG_IDEA 788736
97esav TALK=3S_HEY_MOE1 793472
98esav TALK=3S_HEY_MOE2 804480
99esav TALK=3S_HEY_MOE3 828416
100esav TALK=3S_HEY_MOE4 838400
101esav TALK=3S_PAUSE 861696
102esav TALK=3S_SHUT_UP 887040
103esav TALK=3S_TAXIDERMIST 893568
104esav TALK=3S_TOUPEE 929664
105esav TALK=3S_VICTIM1 939008
106esav TALK=3S_WISE_GUYA 945024
107esav TALK=CLNK_NOISE 950656

Lines 92 through 106 are 3-stooges clips.

HEY_LARRY Hey Larry (Curly)
HEY_MOE Hey Moe (Curly)
SORRY_MOE Sorry Moe (Larry)
CURLY_THINKS I’m tryin’ to think but nothin’ happens (Curly)
BIG_IDEA What’s the big idea!? (Moe)

330

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.3 FOX Frequency Table
This is a supplemental frequency table.
It is used in this example to add several frequencies not found in the internal table.

Listing 19.17: si5351_frq_cmds_10.fox
1REM− Cal l Line : " . / s i5351a_ca lc −T2 −F144 . 1 0 0 , 1 4 4 . 3 5 5 , 5 . 0 −o−10 −

↪→ esi5351_frq_cmds1_10 . fox "
2REM− Output F i l e : si5351_frq_cmds1_10 . fox
3REM− SI5351 Xtal : 20 .000MHz
4REM− Freq O f f s e t : −10.000KHz
5esav ID=FT, si5351_frq_cmds1_10 . fox
6esav 144 .FOFF −10.000
7esav 144.100=139D, 0DAC0, F4240
8esav 144.105=139D, 3C8BF, F4240
9esav 144.110=139D, 6B6C0 , F4240
10esav 144.115=139D, 9A4C0 , F4240
11esav 144.120=139D, C92BF , F4240
12esav 144.125=139E,03E7F , F4240
13esav 144.130=139E,32 C80 , F4240
14esav 144.135=139E,61A7F, F4240
15esav 144.140=139E,90880 , F4240
16esav 144.145=139E, BF680 , F4240
17esav 144.150=139E, EE47F , F4240
18esav 144.155=139F,2903F, F4240
19esav 144.160=139F,57E3F , F4240
20esav 144.165=139F,86C3F, F4240
21esav 144.170=139F, B5A40 , F4240
22esav 144.175=139F, E483F , F4240
23esav 144.180=13A0, 1F3FF , F4240
24esav 144.185=13A0, 4E1FF, F4240
25esav 144.190=13A0, 7CFFF, F4240
26esav 144.195=13A0 ,ABDFF, F4240
27esav 144.200=13A0 ,DAC00, F4240
28esav 144.205=13A1,157BF, F4240
29esav 144.210=13A1,445BF, F4240
30esav 144.215=13A1,733BF, F4240
31esav 144.220=13A1 , A21BF, F4240
32esav 144.225=13A1 ,D0FBF, F4240
33esav 144.230=13A2, 0 BB80 , F4240
34esav 144.235=13A2, 3 A97F , F4240
35esav 144.240=13A2,6977F, F4240
36esav 144.245=13A2,9857F, F4240
37esav 144.250=13A2 , C737F , F4240
38esav 144.255=13A3,01F3F , F4240
39esav 144.260=13A3,30 D40 , F4240
40esav 144.265=13A3, 5FB3F, F4240

331

ICARC FOX Transmitters: 102-73181 KC0JFQ

41esav 144.270=13A3, 8 E93F , F4240
42esav 144.275=13A3 , BD73F, F4240
43esav 144.280=13A3 , EC53F , F4240
44esav 144.285=13A4,270FF, F4240
45esav 144.290=13A4,55 F00 , F4240
46esav 144.295=13A4,84CFF, F4240
47esav 144.300=13A4 ,B3AFF, F4240
48esav 144.305=13A4 , E28FF , F4240
49esav 144.310=13A5, 1D4BF, F4240
50esav 144.315=13A5, 4C2BF, F4240
51esav 144.320=13A5, 7B0BF, F4240
52esav 144.325=13A5 ,A9EBF, F4240
53esav 144.330=13A5 ,D8CBF, F4240
54esav 144.335=13A6,1387F, F4240
55esav 144.340=13A6,4267F, F4240
56esav 144.345=13A6,7147F, F4240

This example is generated for the V3.72 revision where the internal frequency table is generate
without an offset. Each transmitter is characterized and then the appropriate external table is
loaded to operate at the correct frequency.
The current offset can be found using the STAT command or using the EDMP 144 command.

This particular table is aimed at the SI5351. This adds some frequencies used by the ICS525 to
allow these newer units to be used with the older ones.
You may also note that the ID= construct is creeping in to more places to document the files
that were used to build the load. Line 5 (ID=FT) indicates the source file for this section of the
external frequency table.
As more manual work is removed, we make use of the ID=FT to track how we constructed the
table, frequency offsets in particular.

332

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.4 FOX Frequency Table
This is a supplemental frequency table for operating in the FM band.

Listing 19.18: si5351_frq_cmds99_0.fox
1REM− Cal l Line : " . / s i5351a_ca lc −T2 −F87 . 5 , 9 2 . 9 5 , 2 0 0 . 0 −20 −o0 −

↪→ esi5351_frq_cmds99_0 . fox "
2REM− Output F i l e : si5351_frq_cmds99_0 . fox
3REM− SI5351 Xtal : 20 .000MHz
4REM− Freq O f f s e t : 0 .000KHz
5esav ID=FT, si5351_frq_cmds99_0 . fox
6esav 87.500=0F80 ,00000 , F4240 ,200
7esav 87.700=0F8A, 3 A97F , F4240 ,200
8esav 87.900=0F94 ,752FF, F4240 ,200
9esav 88.100=0F9E , AFC80 , F4240 ,200
10esav 88.300=0FA8, EA600 , F4240 ,200
11esav 88.500=0FB3,30D3F, F4240 ,200
12esav 88.700=0FBD, 6B6BF, F4240 ,200
13esav 88.900=0FC7 , A6040 , F4240 ,200
14esav 89.100=0FD1, E09C0 , F4240 ,200
15esav 89.300=0FDC,270FF, F4240 ,200
16esav 89.500=0FE6,61A7F, F4240 ,200
17esav 89.700=0FF0 , 9 C400 , F4240 ,200
18esav 89.900=0FFA, D6D80 , F4240 ,200
19esav 90.100=1005 ,1D4BF, F4240 ,200
20esav 90.300=100F,57E3F , F4240 ,200
21esav 90.500=1019 ,927C0 , F4240 ,200
22esav 90.700=1023 ,CD140 , F4240 ,200
23esav 90.900=102E,1387F, F4240 ,200
24esav 91.100=1038 ,4E1FF, F4240 ,200
25esav 91.300=1042 ,88B80 , F4240 ,200
26esav 91.500=104C, C3500 , F4240 ,200
27esav 91.700=1057 ,09C3F, F4240 ,200
28esav 91.900=1061 ,445BF, F4240 ,200
29esav 92.100=106B, 7 EF40 , F4240 ,200
30esav 92.300=1075 ,B98C0 , F4240 ,200
31esav 92.500=1080 ,00000 , F4240 ,200
32esav 92.700=108A, 3 A97F , F4240 ,200
33esav 92.900=1094 ,752FF, F4240 ,200

This example is generated for the V4.07 revision that allow frequency selection in the FM band.
Like the 2M tables, each transmitter is characterized and then an appropriate external table is
loaded to operate at the correct frequency.

Note the addition of a 4th. numeric parameter in this table. This range of frequency selections
require the second MultiSynth to operate with a divisor or 3.

333

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.5 FOX2X_S0 Message
This is the S0 message that is sent out periodically (when the S0= schedule is loaded and en-
abled).

Listing 19.19: FOX2X_S0
1#
2# Operating Schedules
3# The power draw o f the DRA818/SA818 may cause the
4# "BATC" form o f the r epor t to take too long , so we
5# ALWAYS use the voca l r epor t .
6# ALSO We’ re making use o f the <CALL> and <NAME> s u b s t i t u t i o n
7# i n s i d e the fox t r a n s m i t t e r ! ! !
8#
9esav ID=FOX2X_S0. fox Base l i ne
10esav S0=BATR
11esav S0=CONF FM
12esav S0=TONE 1.0
13esav S0=CWPM 30,−1,−1,−1,−1
14esav S0=BEGN
15esav S0=TALK <CALL>
16esav S0=TALK <NAME>
17esav S0=WAIT 0 .5

Although the previous commands in the ANN= section set audio tone and chipping rate, these
are set at the beginning of the S0 message keeping its sound consistent. In this example, a differ-
ent chipping rate is specified using standard weightings. All this can be changed in the CWPM
command.
The audio tone frequency is moved slightly from the ANN= section. Allowed, of course, but not
required.

The same BEGN command enables the transmitter and send a CQ message with the station
callsign.

This setup verbalizes the station identity, both because we can (as we have the capability) and to
make life easy for the fox hunters (so they can stay aware of station identity).

Listing 19.20: FOX2X_S0
18#esav S0=’batvc ’ V 7 .2
19#esav S0=BATC EV 7.2
20#esav S0=WAIT 0 .5

We may also verbalize battery status, just like we did in the ANN= section (although we do
not in this example). Hunt organizers can casually listen in on this traffic to track the health of
the transmitters.

Battery status could as easily been sent in code using the BATC command.

Notice the WAIT commands that just cause a bit of dead air (with carrier). Our example here
give us about 500mS of silence.

334

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.21: FOX2X_S0
21#
22# F i l l time so they have a chance o f f i n d i n g me
23#
24esav S0=TONE ’ tone ’
25esav S0=CWPM 25,−1,−1,−1,−1
26esav S0=WAIT 0.15
27#esav S0=CODE hi h i h i
28esav S0=BATC EV 7.2
29esav S0=WAIT 0 .5
30esav S0=CODE IOWA CITY
31esav S0=CODE AMATEUR RADIO
32esav S0=CODE CLUB FOXHUNT
33esav S0=CODE F W KENT PARK
34esav S0=CODE MARCH 30 2025

At line 24, we start to be real bastards to our diligent hunters by changing the audio frequency
and the chipping rate. Our station now sounds a bit different than it did when the message traf-
fic (i.e. the station identification) began.

The CODE commands send the text fragments (in our example "IOWA CITY AMATEUR RA-
DIO"). Text is broken up so that it fits within the 31 byte limit of each command record.

Listing 19.22: FOX2X_S0
35#
36# Prepare (kinda . . .) f o r S i g n o f f
37# these ext r REM− commands can be de l e t ed (EZER)
38# and rep laced with more CODE commands to ad jus t time . . .
39#
40esav S0=REM−
41esav S0=REM−
42esav S0=REM−

Place three spare records into the S0= file to make life easier if we need to add a command or
two.

Listing 19.23: FOX2X_S0
43#
44# S i g n o f f
45#
46esav S0=BATR
47esav S0=TONE 1.0
48esav S0=CWPM 30,−1,−1,−1,−1
49esav S0=DONE
50#

When finished, we use the DONE command to clean-up at the end. Here again, we mess with
the audio tone and chipping rate to match the feel of the sign-on message at the beginning.

335

ICARC FOX Transmitters: 102-73181 KC0JFQ

With the V3.73 update, we added a pair of BATR commands (lines 10 and 46) to provide bat-
tery data when connected to a host system. These commands don’t interfere with normal opera-
tion.

Here are the S1 through S5 messages.
This is the wildlife tracker mode with interrupted carrier.
This set implements the tracker emulation for concurrent operation. The S1 through S5 mes-
sages are meant to run concurrently. These assume the TOY clocks have has been set recently
(within 24 hours). The chirps within the group should occur one after the other. If the TOY
clock has drifted, some of the chirps may be on top of each other.

19.6 FOX2X_S1 Message
To activate the chirp schedule, replace the last command in the ANN= file (i.e. the
ANN=RUN0,S0 command) with a similar command to activate the S1 schedule.

Listing 19.24: FOX2X_S1
1#
2# W i l d l i f e s i g n a t u r e (30 second per iod)
3# ALSO We’ re making use o f the <CALL> and <NAME> s u b s t i t u t i o n
4# i n s i d e the fox t r a n s m i t t e r ! ! !
5esav ID=FOX2X_S1. fox CHiRP
6esav S1=TONE 1.0
7esav S1=CWPM 30,−1,−1,−1,−1
8esav S1=BEGN
9esav S1=TALK <CALL>
10esav S1=TALK <NAME>
11esav S1=CONF CW
12esav S1=CHRP ’ chrpfrq ’ ’ chrp1 ’ 0 .30 55
13esav S1=CONF FM
14esav S1=TONE 1.0
15esav S1=CWPM 30,−1,−1,−1,−1
16esav S1=DONE SILENT
17#

The CONF command set interruptes AM mode. The carrier is removed between chirps.

We follow with the usual configuration of CWPM to set the chipping rate to 30 words per
minute, TONE to set audio tone for the sign-on message to 1KHz, and BEGN to enable the
clock generator and send the sign-on message.

We send a pair of TALK command to verbally announce the callsign and station name.

The CHRP command uses a generic substitution to insert the period and offset into the com-
mand. This requires fox_simple V3.1.
The substitutions used when building from this example is for a 6 second period with each unit
setting up for a different offset.

At the end of the chirp traffic, we set the code generator to the same configuration as what we
had at the start of the cycle (so it sounds familiar).

336

ICARC FOX Transmitters: 102-73181 KC0JFQ

The DONE command has the SILENT flag to suppress station identification traffic. We are
transmitting more-or-less continuously, so the start of the next cycle serves to identify the trans-
mitter.
The station identification message will fall on top of the other transmitters inn the group, so the
duration of the chirp is set to 300mSec.

19.7 FOX2X_S2 Message
Here is the S2 message.

Listing 19.25: FOX2X_KC0JFQ_S2
1#
2# I am a f igment o f your imaginat ion !
3#
4esav ID=FOX2X_S2. fox _2025_TREK. hex
5esav S2=BEGN
6esav S2=TALK <CALL>
7esav S2=TALK <NAME>
8#esav S2=TALK SHRK_WDY_CLP
9esav S2=TALK HEY_LARRY
10esav S2=TALK HEY_MOE
11esav S2=TALK SORRY_MOE
12esav S2=TALK CURLY_THINKS
13esav S2=TALK BIG_IDEA
14esav S2=TALK 3S_TOUPEE
15esav S2=TALK 3S_WISE_GUYA
16esav S2=TALK 3S_HEY_MOE1
17esav S2=TALK 3S_HEY_MOE2
18esav S2=TALK 3S_HEY_MOE3
19#esav S2=TALK 3S_HEY_MOE4
20esav S2=TALK 3S_VICTIM1
21esav S2=TALK 3S_TAXIDERMIST
22esav S2=TALK 3S_PAUSE
23esav S2=DONE

This is The Three Stooges!
It chatters along for just under one minute.

These are added to accommodate a couple more operating scenarios should we choose to imple-
ment them. They appear here as placeholders to keep the FOX2X_KC0JFQ.fox from changing
as these two sequences evolve (this allows this manual to build correctly when S2 or S3 are up-
dated).

337

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.8 FOX2X_S3 Message
Here is the S3 message.

Listing 19.26: FOX2X_S3
1#
2# I am a l s o a f igment o f your imaginat ion !
3#
4esav ID=FOX2X_S3. fox _2025_TREK. hex
5#
6esav S3=BEGN
7esav S3=TALK <CALL>
8esav S3=TALK <NAME>
9esav S3=TALK 2K1_H_9000
10esav S3=TALK 2K1_GD_EVE
11esav S3=TALK 2K1_CHESS2
12esav S3=TALK 2K1_ENJOYA
13esav S3=TALK 2K1_JUST_MOM
14esav S3=TALK 2K1_MSG_4_U
15esav S3=TALK 2K1_MSG_REP
16esav S3=TALK 2K1_IGNIT
17esav S3=TALK 2K1_DANGER
18esav S3=TALK 2K1_FOOLPROOF
19esav S3=TALK 2K1_HUMAN_ERR
20esav S3=DONE

This is a set of clips from 2001, A Space Odyssey.
It also runs for just under one minute.

338

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.9 FOX2X_S4 Message
Here is the S4 message.

Listing 19.27: FOX2X_KC0JFQ_S4
1#
2# I am a l s o a f igment o f your imaginat ion !
3#
4esav ID=FOX2X_S4. fox _2025_TREK. hex
5#
6esav S4=BEGN
7esav S4=TALK <CALL>
8esav S4=TALK <NAME>
9esav S4=TALK TREK_YELLOW
10esav S4=TALK TREK_AYE_SIR
11esav S4=TALK TREK_ABSORPT
12#esav S4=TALK TREK_ENERGY
13esav S4=TALK TREK_GREETIN
14esav S4=TALK TREK_HAILING
15esav S4=TALK TREK_MCCOY_
16esav S4=TALK TREK_QUESTION
17esav S4=TALK TREK_SQRE_NOST
18esav S4=TALK TREK_SQRE_UNUS
19esav S4=DONE

Here we encounter James Kirk and Mr. Spock from Star Trek.
It also chatters along for just under one minute.

339

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.10 FOX2X_S5 Message
Here is the S5 message.

Listing 19.28: FOX2X_S5
1#
2# /home/wtr/Radio/halo_term/ fox_simple −SFOX2X −c150 −t10 −CW0JV −NFOX21 −Q144

↪→ . 225 −R"360 ,60" −A−7 −fSX_CHIRP . fox
3#
4#
5#=====================================
6#
7esav ID=FOX2X_S5. fox W i l d l i f e
8esav S5=TONE 1.0
9esav S5=CWPM 30,−1,−1,−1,−1
10esav S5=BEGN
11esav S5=TALK <CALL>
12esav S5=TALK <NAME>
13#
14esav S5=CONF CW
15#
16#−−−
17# Make i t do a animal t r a c k e r Chirp
18#
19esav S5=WAIT 3
20#
21# ’ chrpfrq ’ f requency (s e t in s c r i p t)
22# 12 second c y c l e
23# ’ chirp ’ second o f f s e t i n to c y c l e (s e t in load s c r i p t)
24# 0.100 second tone durat ion
25# 26 repeat count (312 seconds)
26#
27esav S5=CHRP ’ chrpfrq ’ 12 ’ chirp_up ’ 0 .100 46
28#
29esav S5=WAIT 3
30#
31#−−−
32#
33esav S5=CONF FM
34#
35esav S5=TONE 1.0
36esav S5=CWPM 30,−1,−1,−1,−1
37esav S5=DONE

A late addition to the fox transmitter sequences, this is a simple emulation of the animal tracker.
Here we emit a simple tone on a repeating schedule.
The timing spec is almost identical to the following S6 message.

340

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.11 FOX2X_S6 Message
Here is the S6 message.

Listing 19.29: FOX2X_S6
1#
2# /home/wtr/Radio/halo_term/ fox_simple −SFOX2X −c150 −t10 −CW0JV −NFOX21 −Q144

↪→ . 225 −R"360 ,60" −A−7 −fSX_CHIRP . fox
3#
4#
5#=====================================
6#
7esav ID=FOX2X_S6. fox CHiRP
8esav S6=TONE 1.0
9esav S6=CWPM 30,−1,−1,−1,−1
10esav S6=BEGN
11esav S6=TALK <CALL>
12esav S6=TALK <NAME>
13#
14esav S6=CONF CW
15#
16#−−−
17# Make i t do a REAL CHiRP
18#
19esav S6=WAIT 3
20#
21# 12 second c y c l e
22# ’ chirp ’ second o f f s e t i n to c y c l e (s e t in load s c r i p t)
23# 0.05 second turn−on de lay (was tone durat ion)
24# 26 repeat count (312 seconds)
25#
26esav S6=CHRP CHIRP_UP 12 ’ chirp_up ’ 0 .05 23
27esav S6=CHRP CHIRP_DN 12 ’ chirp_dn ’ 0 .05 23
28#
29esav S6=WAIT 3
30#
31#−−−
32#
33esav S6=CONF FM
34#
35esav S6=TONE 1.0
36esav S6=CWPM 30,−1,−1,−1,−1
37esav S6=DONE

This is the radar chirp emulation test sequence. As the users manual was edited, the assumed
cycle time for this schedule is 600 seconds. the Chirping activity takes 552 seconds, leaving 48
seconds for the sign-on and sign-off messages.
We use the more-or-less standard sign-on and sign-off. Lines 7 through 13 configure and send the
callsign and nickname. Lines 32 through 36 send the standard sign-off message in code.

The S6=CONF -CW command on line 36 restores the fox transmitter to not operate in an
interrupted carrier mode. This keeps the sign-on message clearly understandable.

341

ICARC FOX Transmitters: 102-73181 KC0JFQ

The S6=CONF CW command on line 13 configures to operate in an interrupted carrier mode.
Much like a code transmitter, we only send a modulated carrier. We suppress the carrier when
there is no audio traffic outgoing.

Lines 25 and 26 send the audio clip in place of a fixed tone. In this example the CHIRP_UP
audio file is an ascending tone from 300Hz to 1500Hz. The CHIRP_UP audio file is a descend-
ing tone from 1500Hz down to 300Hz.

Each audio clip is 500mSec long, fitting well into the 12 second cycle period. The 12 second cycle
is repeated 26 times requiring 312 seconds. This leaves 48 seconds in the 360 second overall cycle
(see the S6= schedule in listing 19.1.3 on page 321) for the sign-on and sign-off messages.

342

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.12 FOX2X_S7 Message
Here is the S7 message.
As with the S1 message, this is activated by altering the last command in the ANN= file.

Listing 19.30: FOX2X_S7
1#
2REM− 0 1 2 3
3REM− 0123456789012345678901234567890
4esav ID=FOX2X_S7. fox F i e ld Day
5esav S7=CONF FM
6esav S7=TONE 1.0
7esav S7=CWPM 30,−1,−1,−1,−1
8esav S7=BEGN
9esav S7=TALK <CALL>
10esav S7=TALK <NAME>
11esav S7=WAIT 1 .0
12esav S7=TALK FD_W0JV
13esav S7=WAIT 1 .0
14esav S7=CWPM 30,−1,−1,−1,−1
15esav S7=TONE 1.5
16esav S7=CODE IOWA CITY
17esav S7=CODE AMATEUR RADIO CLUB
18esav S7=CODE FIELD DAY OPERATIONS
19esav S7=CODE AT F W KENT PARK
20esav S7=WAIT 1 .0
21esav S7=TALK FD_GAZELLE
22esav S7=WAIT 1 .0
23esav S7=REM−
24esav S7=REM−
25esav S7=REM−
26#
27#
28#
29# S i g n o f f
30#
31esav S7=TONE 1.0
32esav S7=CWPM 30,−1,−1,−1,−1
33esav S7=DONE
34#

This is a prototype Field-Day message.

343

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.13 FOX2X_S8 and FOX2X_S9
Here is the S8/S9 message pair.
Although similar to activating S0 and S1 message traffic, these messages are meant to be handled
by only two transmitters. The S8= message on one and the S9= message on a second unit. The
remaining stations in the hunt group would run their S0= or S1= messages normally.

Listing 19.31: FOX2X_KC0JFQ stooge
128#
129# A b i t o f l e v i t y
130#
131#inc lude ’ sx_stooge ’

This is the include line to grab the two sequences for voicing the conversation between Shemp
and Moe.

In this set of sequences we try to expose some of the fine timing capabilities buried in the soft-
ware.
For the older crowd, recall the episode when Shemp hypnotizes Moe. Shemp takes Moe from Los
Angeles to New York. And then upstate to Sing-Sing whereupon Moe picks up a straight back
chair. Shemp attempts to take Moe on to Boston, but Moe is stuck: "I am now in Sing-Sing".

The sequence uses the expanded function of the WAIT command to have one transmitter plays
the part of Shemp, sending Moe across the country. A second transmitter plays the part of Moe
and answers Shemp.

344

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 19.32: FOX2X_STOOGE_S8
4#
5#=====================================
6#
7esav ID=FOX2X_STOOGE. fox S8 Shemp
8esav S8=TONE 1.0
9esav S8=CWPM 30,−1,−1,−1,−1
10esav S8=CONF FM
11esav S8=BEGN
12esav S8=TALK <CALL>
13esav S8=TALK <NAME>
14esav S8=CODE SING SING
15esav S8=CONF CW
16esav S8=CODE E
17#
18esav S8=WAIT ’ stooge ’/40
19esav S8=TALK TS1_LA
20esav S8=WAIT ’ stooge ’/50
21esav S8=TALK TS2_NY
22esav S8=WAIT ’ stooge ’/60
23esav S8=TALK TS3_SING
24esav S8=WAIT ’ stooge ’/70
25esav S8=TALK TS4_BOSTON
26#
27esav S8=WAIT ’ stooge ’/80
28esav S8=CONF FM
29esav S8=TONE 1.2
30esav S8=CODE BEEN LISTENIN TO
31esav S8=CODE THE THREE STOOGES
32#
33esav S8=TONE 1.0
34esav S8=CWPM 30,−1,−1,−1,−1
35esav S8=DONE

See the worksheets in section 22.4 on page 376. A detailed timing layout for this S8= is found in
section 22.5 on page 377.

After our normal sign-on message traffic, we use an enhancement to the WAIT command to syn-
chronize with the clock in the same manner as the MODS scheduling.

When the timing argument to WAIT contains a slash ("/") a second numeric argument is ex-
pected. The WAIT command arguments, then, are the scheduling period and the offset into the
period. The WAIT command waits for that scheduling point before proceeding.
IN the S8= example here, the ’stooge’ parameter is replaced by a value (as loaded in the
test-bed, I used 120 seconds) as the commands are loaded into the fox transmitter by the
fox_simple utility.

345

ICARC FOX Transmitters: 102-73181 KC0JFQ

This is the other half of the conversation.

Listing 19.33: FOX2X_STOOGE_S9
38#
39esav ID=FOX2X_STOOGE. fox S9 Moe
40esav S9=TONE 1.0
41esav S9=CWPM 30,−1,−1,−1,−1
42esav S9=CONF FM
43esav S9=BEGN
44esav S9=TALK <CALL>
45esav S9=TALK <NAME>
46esav S9=CODE SING SING
47esav S9=CONF CW
48esav S9=CODE E
49#
50esav S9=WAIT ’ stooge ’/44
51esav S9=TALK TS1R_LA
52esav S9=WAIT ’ stooge ’/54
53esav S9=TALK TS2R_NY
54esav S9=WAIT ’ stooge ’/64
55esav S9=TALK TS3R_SING
56esav S9=WAIT ’ stooge ’/74
57esav S9=TALK TS3R_SING
58#
59esav S9=WAIT ’ stooge ’/100
60esav S9=CONF FM
61esav S9=TONE 1.6
62esav S9=CODE BEEN LISTENIN TO
63esav S9=CODE THE THREE STOOGES
64#
65esav S9=TONE 1.0
66esav S9=CWPM 30,−1,−1,−1,−1
67esav S9=DONE

In the S8=TALK, we ask the question and in the S9=TALK, we answer. Note that the
S8=WAIT that control timing is scheduled 4 seconds before the S9=WAIT.

This sign-on messages are scheduled by the MODS command and then subsequent timing is
controlled by the WAIT command. The timing control method in the fox transmitter allows for
the required granularity and precision.

The other command that enables this behavior is the CONF CW command. This configures
the RF control in a manner that unkeys the transmitter when there is not traffic being sent. We
are manipulating the control line that drives the PTT pin on the DRA818/SA818 hardware. On
the CHiRP amplifiers, this control line is connected to the on-board power switch which makes
the CHiRP amplifier act like the DRA818/SA818 hardware.
This feature will only work with the newer CHiRP amplifiers and the DRA818/SA818 hardware.
Other amplifiers lack the compatible switching logic.
Near the end, we switch back to more-or-less normal FM mode, where the carrier is constantly on
with the CONF -AM command. This allows the sign-off message (DONE) to be sent without
having the hunters hear their radios dropping when carrier is lost.

346

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.14 S_MOxx.fox and S_sprint.fox
Here are fragments from the IARU message sequence.
The 5 sequences all look the same with only the 3 character message changing for each transmit-
ter. The 3-letter groups are MOE MOI MOS MOH MO5.
M is 2-dash, O is 3-dash and the E,I,S,H, and 5 are one through 5 dits.
So we hear "dah dah dah dah dah dit" for the first, "dah dah dah dah dah dit dit" for the
second, and so-on.

19.14.1 S_MOxx.fox
This is the standard one minute message.

Listing 19.34: S_MOxx
1esav ID=S_MOxx. fox S1 ,MOE
2esav S1=TONE 1.4
3esav S1=CWPM 20,−1,−1,−1,−1
4esav S1=BEGN
5esav S1=WAIT 1 .0
6esav S1=CWPM 15 ,1 ,3 ,15 ,14
7esav S1=CODE,MOE,MOE,MOE,MOE
8esav S1=CODE,MOE,MOE,MOE,MOE
9esav S1=CODE,MOE,MOE
10esav S1=WAIT 1 .0
11esav S1=CWPM 20,−1,−1,−1,−1
12esav S1=DONE

Each of the messages in this set takes 55.350 seconds to send. This comfortably fits in the 60 sec-
ond window.
On line 6 the time after each 3-letter word is stretched out (i.e. the inter-word time) to keep the
time required to send the group equal across all 5 transmitters. This hack keeps the message time
consistent for all transmitters.
The same line for all of the transmitters appear as:

6esav S1=CWPM 15 ,1 ,3 ,15 ,14

19esav S2=CWPM 15 ,1 ,3 ,13 ,14

32esav S3=CWPM 15 ,1 ,3 ,11 ,14

45esav S4=CWPM 15 ,1 ,3 ,9 ,14

58esav S5=CWPM 15 ,1 ,3 ,7 ,14

Note that the 4th. parameter changes from 15 to 7 (delta of 2 for each transmitter). This change
serves to keep the time required to send the last letter of the 3-letter group the same in spite of
the changing word length.

347

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.14.2 S_sprint.fox
This is typical of the sprint messages.
A sprint only allocates 12 seconds to each station in a one minute cycle. The TOY clock needs to
be recently updated and track well for this operation to avoid stepping on other transmitters!
Both the BEGN and DONE have the SILENT modifier to suppress the typical signon as this
would take far too long to send.

Listing 19.35: S_sprint
1esav ID=S_sprint . fox S1 ,MOE
2esav S1=TONE 1.4
3esav S1=CWPM 20,−1,−1,−1,−1
4esav S1=BEGN SILENT
5esav S1=CODE,<CALL>,
6esav S1=CWPM 15,−1,−1,−1,−1
7esav S1=CODE,MOE,MOE,MOE
8esav S1=DONE SILENT

We only provide the station callsign using the CODE,<CALL> to send out the stored station
callsign. The station nickname is not sent. The five variations (S1= through S5=) change the 3
-letter sequence in line 7 in the same manner as the S_MOxx.fox sequences.

This sequence hasn’t yet been timed! Will probably have the CWPM command adjusted and
the number of MOE repetitions. Also keep in mind that the station callsign consumes air time.
Adjustments, specific to your callsign, will need to be made.

Do note that CODE <CALL> will not be properly substituted with the actual callsign and
nickname prior to version V4.09.
The earlier versions will send the <CALL> text without being translated. In this example, you
would be out of compliance with the rules when running the earlier software.

348

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15 fox20.sh
This is the shell script used to load the ICARC fox transmitters. The single argument to the shell
script is the transmitter nunber. It is reformed into the transmitter nickname on line 36.

Listing 19.36: fox20.sh setup
1#!/ usr / bin /bash
2#
3#
4FOXS=/home/wtr/Radio/halo_term/ fox_simple
5#FOXS=echo
6#
7# v a r i a b l e s , unique to our fox hunt
8#
9CALL=KC0JFQ
10CALL=W0JV
11FREQ=144.225
12OFF=300 ,0
13RUN=600 ,0
14STOOGE=120
15CHRP1="6 ,0"
16TACH=−SFOX2X
17TACH=" "
18FOXCMD=FOX2X_KC0JFQ. fox
19OFF_FILE=""
20FM_FILE=""
21IARU_80M=""
22SCHED=S0
23CHRPFRQ=1.0
24CHIRP_UP=0
25TONE=1.0
26LOG=FOX2X_KC0JFQ
27TALK_FILE=talk_73181_2025_1 . fox
28SYNTH_DEV=SI5351
29SYNTH_SET1=8MA
30SYNTH_SET2=CLK0
31SX_STOOGE=FOX2X_STOOGE. fox
32SPARE1=not
33SPARE2=used
34BATVC=BATV
35#
36# v a r i a b l e s , unique to i n d i v i d u a l fox t r a n m s i t t e r s

Default values are assigned for all of the variables.

349

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15.1 fox20.sh FOX5
This station is one of the older 102-73161-25 boards. I uses the ICS525 frequency synthesizer.

Listing 19.37: fox20.sh FOX5
58#==
59#
60# FOX5
61#
62i f [" $1 " = "5 "] ; then
63TACH=−SFOX5
64TACH=" "
65FREQ=144.285
66BATVC=BATC
67SCHED=S0
68OFF=360 ,0 # FOX5 144.285
69CHRP1="6 ,3"
70CHRPFRQ=1.3
71SYNTH_DEV="ICS525 "
72SYNTH_SET1=BMON
73SYNTH_SET2=73161
74OFF_FILE="/home/wtr/Fox_Tx_73181/ trunk / i c s525_tab l e . fox "
75SX_STOOGE=" f r eq_nu l l . fox "
76TALK_FILE="talk_fox5_rxxk . fox "
77SPARE1=VOICE

In lines 68 through 70 ("SYNTH_" lines) we change the configuration to accommodate the 102-
73161-25 hardware. In lines 71 through 73 we deal with the lack of FLASH memory by leaving
out the SI5351 frequency table and the full TALK file (talk_fox5_2025_1 has only the station
callsign and our nickname).

350

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15.2 fox20.sh FOX20
The FOX20 station hardware is the 102-73181-5 board. This uses the (obsolete) 80-pin zNEO
package.

Listing 19.38: fox20.sh FOX20
171#−−
172#
173# FOX20
174# FREQ=144.285 As part o f a hunt group
175# FREQ=144.300 As a t r a i n i n g t r an s m i t t e r
176#
177i f [" $1 " = "20"] ; then
178FREQ=144.285
179FREQ=144.300
180SCHED=S0
181OFF=60 ,0 # FOX20 144.300
182OFF_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds_10 . fox "
183FM_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds99_5 . fox "
184TALK_FILE=talk_73181_2025_TREK_2 . fox
185LOG=FOX20_KC0JFQ
186f i

We select the operating frequency for the first group, same as FOX5, but use a different schedul-
ing offset.

You may notice that this transmitter group is not on a 25KHz step. This is a limitation of the
ICS525 synthesizer used in the older transmitters in the group. The 102-73181-5 hardware deals
well with this, but will not voice the frequency in the ANN= message.

351

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15.3 fox20.sh FOX21
The FOX21 station hardware is the 102-73181-10 board.

Listing 19.39: fox20.sh FOX21
189#==
190#
191# FOX21 and FOX22 can be operated in the
192# "3 Stooges " ’SING SING ’ mode . . .
193#
194i f [" $1 " = "21"] ; then
195SCHED=S6
196OFF=360 ,0 # FOX21 144.225
197RUN=600 ,0
198CHRP1="6 ,0"
199CHRPFRQ=1.0
200CHIRP_UP=0
201TONE=1.3
202LOG=FOX21_KC0JFQ
203#NO# TALK_FILE=talk_73181_2025_TREK_2 . fox FLASH too smal l !
204OFF_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds_8 . fox "
205FM_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds99_4 . fox "
206IARU_80M="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds80_1 . fox "
207f i

This is the first station in the second hunt group. Our frequency is set clear up in line 11 (i.e. the
default of 155.225MHz). The SI5351 crystal appears to have an 8KHz offset, so we load the table
(freq_5351-08.fox) the corrects for this error.

We also see that this transmitter has a small FLASH device so we can’t store the extended audio
file system.

352

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15.4 fox20.sh FOX27
The FOX27 station hardware is the 102-73181-10 board.

Listing 19.40: fox20.sh FOX27
296#==
297#
298i f [" $1 " = "27"] ; then
299OFF=360 ,30 # FOX27 144.325
300CHRP1="6 ,0"
301CHIRP_UP=0
302FREQ=144.325
303LOG=FOX27_KC0JFQ
304TALK_FILE=talk_73181_2025_TREK_2 . fox
305OFF_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds_12 . fox "
306FM_FILE="/home/wtr/Fox_Tx_73181/ trunk /si5351_frq_cmds99_6 . fox "
307TONE=1.3
308f i

FOX21 and later all use the 102-73181-10 board revision, so we match FOX21 in that respect.
All we change is out operating frequency (to 144.325MHz in line 275) and operating schedule (in
line 272).

Also note that this unit is calling for the extended audio file system to be loaded in line 284 as
there is a large FLASH device on this board.

353

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.15.5 fox20.sh fox_simple
Now that we have all the variable set for our station, we can invoke the fox_simple loader to load
up the FRAM with out sequence.

Listing 19.41: fox20.sh fox_simple
460$FOXS $TACH −c150 −t10 −f$FOXCMD −l$LOG . log \
461−Xchrp1=$CHRP1 \
462−Xchrpfrq=$CHRPFRQ \
463−Xsched=$SCHED \
464−Xtone=$TONE \
465−Xstooge=$STOOGE \
466−Xchirp_up=$CHIRP_UP \
467−Xchirp_dn=$CHIRP_DN \
468−Xrun=$RUN \
469−Xruns6=$RUN \
470−Xsynth_dev=$SYNTH_DEV \
471−Xsynth_set1=$SYNTH_SET1 \
472−Xsynth_set2=$SYNTH_SET2 \
473−Xta l k_f i l e=$TALK_FILE \
474−Xsx_stooge=$SX_STOOGE \
475−Xspare1=$SPARE1 \
476−Xspare2=$SPARE2 \
477−Xbatvc=$BATVC \
478−X o f f _ f i l e=$OFF_FILE \
479−Xfm_file=$FM_FILE \
480−Xiaru_80m=$IARU_80M \
481−C$CALL −N$NAME −R$OFF −Q$FREQ

Looking way back at line 4, we see the location of the fox_simple utility image.
The $TACH variable (from lines 16 and 60) gives us the USB device that connects us to the tar-
get station.

We ask for a 150mS delay between records (-c150) and to load the clock with a truncated time of
modulo 10 days. The $FOXCMD variable points to the master fox command file. And we save
a log of the sent commands in the $LOG.log file.

All of the -x lines setup parameter substitutions in the $FOXCMD file. Looking through the
FOX2X_KC0JFQ.fox records above, you will find where all these generic substitutions occur.

The last line has the fixed substitutions.

• -C$CALL for the station callsign

• -N$NAME for the station nickname

• -R$OFF for the station scheduling (period and offset)

• -Q$FREQ for the operating frequency

• -A$OFF_FILE for the SI5351 external frequency table

354

ICARC FOX Transmitters: 102-73181 KC0JFQ

fox_binary

We can also use fox20.sh to generate a log file with the translated commands and use the
fox_binary utility to perform a fast load of the transmitter FRAM.

Leaving the $TACH variable off of the command line will suppress the serial channel selection
while still generating the translated log for the fox_binary utility.

19.16 ONCE Testing
The ONCE command is used to time the message as it is sent out. We see the command re-
ports as the sequence runs. This operation is used to time the message so we can adjust to fit
as needed.

once s5=

sts00,371* ONCE: One Time Sequence Test "S5="
sts20,00* Handler_WPMR (cmd_code.c*) Handler_CWPM 25 (1 3 7 14) 0.04 Sec
sts23,23* Handler_BEGN (cmd_message.c*) 18:40:59.120 "e.. CQ CQ CQ DE KC0JFQ " BEGN 11.20 Sec
sts20,00* Handler_WPMR (cmd_code.c*) Handler_CWPM 20 (1 3 7 14) 0.04 Sec
sts28,17* Handler_BATC (cmd_battery.c*) BATC HI HI 7.656 9.04 Sec
sts26,00* Handler_WAIT (cmd_message.c*) TIMER_delay_ticks(50); 0.51 Sec
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=BATTV,4224,4416,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_N7,38272,1888,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=POINT,13824,1344,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_N7,38272,1888,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_VOLTS,47744,2944,4K
sts29,05* Handler_BATV (cmd_battery.c*) 7.66V 3.37 Sec
sts26,00* Handler_WAIT (cmd_message.c*) TIMER_delay_ticks(50); 0.51 Sec
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=BATTI,0,4160,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_N4,32384,1888,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_N9,41728,2304,4K
sts29,00* Entry_AUDIO_ (cmd_voice.c*) TALK=V_MAMP,44032,3616,4K
sts29,04* Handler_BATV (cmd_battery.c*) 49mA 3.20 Sec
sts26,00* Handler_WAIT (cmd_message.c*) TIMER_delay_ticks(50); 0.52 Sec
sts20,00* Handler_WPMR (cmd_code.c*) Handler_CWPM 25 (1 3 7 14) 0.04 Sec
sts28,28* Handler_BATC (cmd_battery.c*) BATC SOS SOS TTTTTTT EEEEEE 8.73 Sec
sts28,26* Handler_BATC (cmd_battery.c*) BATC HI HI TTTTTTT EEEEEE 7.39 Sec
sts27,19* Handler_DONE (cmd_message.c*) 18:41:43.770 "DE KC0JFQ SK SK SK " 9.00 Sec
sts00,13* Execution Time: 53.760
RDY00,00* (Sp=0xBFA0)+1932 18:41:52.820

The sts00,13* Execution Time: is 53.8 seconds.

Given five stations on a 5 minute cycle, we allocate 60 seconds to each station. This test indi-
cates we have about 6 seconds to spare, which is a reasonable to account for the variation in the
TOY clock between stations.
We can expect the stations to not overlap each-other during the hunt.

355

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.17 ICARC Fox Hunt Configuration
This section talks about the scripts in section 19.1 on page 317 as used to implement the W0JV
fox hunts. Although there are six sequences stored in these FRAM of the fox transmitters, only
three will be discussed here. Using the remaining three is much the same as that discussed here.
Note that the FLASH is loaded with audio clips tailored for the local club and authors callsigns.
These clips will not be used outside the ICARC unit so you will need to load your own callsign
into FLASH if you load the authors audio files. The number of callsigns that may be stored in
FLASH are limited only by the size of the FLASH (i.e. you may store multiple callsigns if you
need them). In our working example, the W0JV and KC0JFQ clips are defined in lines 20 and
21 of the talk_73181_2025_1.fox file shown in section 19.2 on page 327.
We also have vocalizations for 19 unique transmitter nicknames, FOX20 through FOX38, allow-
ing for three 6-unit groups with this audio load. These names, being generic, may be reused as
they exist.
You are free, of course, to regenerate all of the voice fragments. The voice fragments on lines 1
through 19 are used to vocalize a battery report (using the BATV command). The voice frag-
ments on lines 35 through 44 are used to vocalize the operating frequency in the announce mes-
sage shown in section 19.1.6 on page 324 on lines 100 and 101.

Keep in mind that the frequency table in section on page 332 is one of about 20 that were gen-
erated for the authors transmitter groups. The fox transmitters built by the author all require
slightly different offsets to place the carrier at the center of the receive window. None of these
transmitters have frequency trim parts on the RF clock generator.
You must measure the frequency offset on your units and (individually) select accordingly.

The INI= section that is loaded into the FRAM in the fox transmitter is uniquely tailored for
each transmitter as it is loaded.
The name and call (lines 47 and 48 in section 19.1.3 on page 321) will be changed to our call-
sign (for our club hunts to W0JV) and the nickname for each fox (FOX21..FOX32 for two 6-unit
hunt groups).

Down at lines 61 through 70 we define up to ten schedules. We will only activate one of them,
but having them all stored in FRAM allows us to easily change the personality to fit the particu-
lar style of hunt we will be operating.
For our typical hunt, we operate 6-unit groups on a 6 minute cycle. Each transmitter is allocated
a one minute window in the cycle. The S0= schedule is loaded as 360,0 in the first unit, 360,60
in the second and sliding each successive unit by 60 seconds. The second group operates on a dif-
ferent frequency. Should you operate with a third, simply select another unique operating fre-
quency.

The ANN= section that is loaded into the FRAM is also tailored to each individual transmitter.
The callsign and nickname (section 19.1.6 on page 324) on lines 94 and 95 are handled within the
fox transmitter. The working callsign and nickname having been saved away in the INI= section
earlier. The <CALL>

We assign the operating frequency as the FRAM is loaded. That frequency is verbalized in lines
100 and 101 and actually set in line 105. This new frequency assignment will take effect at the
next BEGN command, so we don’t pull the rug out from under ourselves.
The last step is to activate one of the available schedules. Line 107, like most of the rest of the
unit specific setup, is tailored to the particular unit when FRAM is loaded using a shell script.

356

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.17.1 ICARC S0= Sequence
The normal fox hunt is implemented using the S0= sequence shown in section 19.5 on page 334.
This sequence is configured to be used for battery life evaluation (the BATR commands) with-
out impacting hunt operations. One BATR command with the RF amplifier disabled (line 119)
and one with it enabled (line 155).

As expected, we take callsign and nickname from values stored in the INI= sequence. As we
have the verbalization stored in FLASH, we can verbally identify the transmitter (lines 124 and
125). The callsign will have been sent in code wit the BEGN command (line 123). Note that the
sign-on message (i.e. the BEGN command) and the sign-off message (i.e. the BEGN command)
are sent wit the same chipping rate and at the same audio frequency. This makes the start and
stop sound the same on all units to allow the hunter to recognize when we are about to switch
over to a new transmitter.
The main body of the message sounds a bit different from each transmitter as we define the au-
dio frequency in the shell script as we load that from FRAM.
The hunter should be able to recognize that we’ve recycled back to the first unit in the group by
the drop in frequency of the main message.

The sign-off message (i.e. the BEGN command), as mentioned previously, is set with a different
chipping rate (i.e. back to that of the sign-on message) and audio tone frequency (again, back to
that of the sign-on message).
Reverting to the sound of the sign-on message, as mentioned, is intended to suggest to the hunter
that the transmitter is about to go quiet.

19.17.2 ICARC S1= Sequence
An alternative hunt, which is far more difficult to hunt is embodied in the S1= sequence (in
section 19.6 on page 336).
This sequence requires that the TOY clock be set the day prior to the hunt so that the TOY
clock hasn’t drifted. We use the CHRP command to send a short audio burst (300 mSec is spec-
ified in the command arguments). The sign-on message occurs using the normal scheduling argu-
ments, that is every 360 seconds with each transmitter shifted by an additiolnal 60 seconds.
Once operating, the short audio tone is sent every six seconds. The six units are staggered by one
second, so you get a short peep from a different unit each second. Very hard to locate!
As with all the other fragments discussed here, the ’chrpfrq’ and ’chrp1’ are substituted when
running the shell script to load the FRAM. The first unit get loaded with 1.3,6,3 and the next
with 1.0,6,0 such that each unit is given the same period (2nd. argument) and a unique fre-
quency (1st. argument) and offset (3rd. argument).

357

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.17.3 ICARC S6= Sequence
The S6= sequence operates in a similar fashion while making use of a feature added in the V3.85
software. Here we change from using a simple tone from the CW tone generator to using a short
audio clip. The specific clips used are of a rising audio tone and a falling audio tone. An audio
emulation, if you will, of a RADAR chirp.
We use the CHRP command with a filename rather than an audio tone value. As long as the
audio filename starts with a non-numeric character, the software will attemp a lookup in the talk
directory.
The remaining arguments to the CHRP command perform the same job with the exception of
the argument that specifies tone duration. The function of that argument changes to providing
an RF settling time before audio data begins flowing.
The cycle time is expanded to 12 seconds to relax demands on the TOY clock and to accommo-
date the slightly longer time that the RF amplifier is enabled. Each of the six units in the group
are staggered by 2 seconds.
For both the S1= sequence and the S6= sequence we alter the bit in the configuration array
that disables the RF amplifier when the fox is not actively transmitting (this is what the CONF
-AM command does). In this configuraton, the RF amplifier is only powered when sending au-
dio. When sending code, the time between dits and dahs have the RF amplifier powered down.

358

ICARC FOX Transmitters: 102-73181 KC0JFQ

19.18 FOX21_KC0JFQ.log
The log file lists the commands sent to the target fox system.

000 esav REM− . / fox_simple V3 . 6 Apr 21 2025
001 esav REM− −S Undefined
002 esav REM− −F FOX2X_KC0JFQ. fox
003 esav REM− 2025−06−16T19 : 4 7 : 0 2
004 esav ID=FL talk_73181_2025_1 . fox
005 esav ID=FL 2025−06−03T12 : 1 9 : 1 3
006 esav TALK=KC0JFQ 0
007 esav TALK=W0JV 5760
008 esav TALK=FOX20 11904
009 esav TALK=FOX21 14848
010 esav TALK=FOX22 19072
011 esav TALK=FOX23 23424
012 esav TALK=FOX24 28672
013 esav TALK=FOX25 33408
014 esav TALK=FOX26 39552
015 esav TALK=FOX27 44544
016 esav TALK=FOX28 49152
017 esav TALK=FOX29 53632
018 esav TALK=FOX30 58624
019 esav TALK=FOX31 62464
020 esav TALK=FOX32 67200
021 esav TALK=FOX33 72064
022 esav TALK=FOX34 77696
023 esav TALK=FOX35 83328
024 esav TALK=FOX36 88832
025 esav TALK=FOX37 94208
026 esav TALK=FOX38 99328
027 esav TALK=FOX39 103552
028 esav TALK=BATTI 108928
029 esav TALK=BATTV 113152
030 esav TALK=REG5 117632
031 esav TALK=POINT 122752
032 esav TALK=V_HZ 124160
033 esav TALK=V_KHZ 126592
034 esav TALK=V_MHZ 129792
035 esav TALK=V_N0 132992
036 esav TALK=V_N1 135680
037 esav TALK=V_N2 137472
038 esav TALK=V_N3 139648
039 esav TALK=V_N4 141568
040 esav TALK=V_N5 143488
041 esav TALK=V_N6 145664
042 esav TALK=V_N7 147456
043 esav TALK=V_N8 149376
044 esav TALK=V_N9 150912

045 esav TALK=V_MAMP 153344
046 esav TALK=V_VOLTS 157056
047 esav TALK=V_SEC 160128
048 esav TALK=V_TIRP 163328
049 esav TALK=V_F144 167424
050 esav TALK=V_F145 172160
051 esav TALK=V_F200 178176
052 esav TALK=V_F225 183936
053 esav TALK=V_F250 189952
054 esav TALK=V_F275 196352
055 esav TALK=V_F300 202240
056 esav TALK=V_F325 208128
057 esav TALK=V_F350 212864
058 esav TALK=V_F375 217472
059 esav TALK=CHIRP_UP 221952
060 esav TALK=CHIRP_DN 224000
061 esav TALK=CHIRP_UPDN 226048
062 esav TALK=FD_W0JV 230144
063 esav TALK=FD_FOX 279808
064 esav TALK=FD_GAZELLE 293120
065 esav TALK=FD_CATCH 302592
066 esav TALK=FD_TUNA 311680
067 esav TALK=FD_SILLY_8K 321920
068 esav TALK=TS1_LA 333312
069 esav TALK=TS1R_LA 343168
070 esav TALK=TS2_NY 354816
071 esav TALK=TS2R_NY 364160
072 esav TALK=TS3_SING 374912
073 esav TALK=TS3R_SING 384256
074 esav TALK=TS4_BOSTON 393984
075 esav TALK=SHRK_WDY_CLP 402560
076 esav TALK=HEY_LARRY 413824
077 esav TALK=HEY_MOE 417536
078 esav TALK=SORRY_MOE 420480
079 esav TALK=CURLY_THINKS 428160
080 esav TALK=BIG_IDEA 436352
081 esav TALK=CLNK_NOISE 441088
082 esav TALK=CLUNKING 445952
083 esav TALK=CLUNKX3 449280
084 esav TALK=CLUTCH 457472
085 esav ID=FL SIZE 0x72180
086 esav INI=TIME
087 esav INI=WAIT 0 .5
088 esav INI=TIME
089 esav INI=EPOC −5.0

359

ICARC FOX Transmitters: 102-73181 KC0JFQ

090 esav INI=NAME FOX21
091 esav INI=CALL W0JV
092 esav INI=CONF SI5351
093 esav INI=CONF 8MA CLK0
094 esav INI=CONF not used
095 esav INI=FREQ 144.150
096 esav INI=BATR
097 esav INI=MODS S0 360 ,0
098 esav INI=MODS S1 360 ,0
099 esav INI=REM− MODS S2 360 ,0
100 esav INI=REM− MODS S3 360 ,0
101 esav INI=REM− MODS S4 360 ,0
102 esav INI=REM− MODS S5 360 ,0
103 esav INI=MODS S6 600 ,0
104 esav INI=MODS S7 360 ,0
105 esav INI=MODS S8 360 ,0
106 esav INI=MODS S9 360 ,15
107 esav INI=STAT
108 esav TEST=FREQ 144.100
109 esav TEST=BEGN, SILENT
110 esav MAS=CWPM 35,−1,−1,−1,−1
111 esav MAS=STAT
112 esav REM− fox_ann_V2025 . fox
113 esav ANN=TONE 1.0
114 esav ANN=CWPM 30,−1,−1,−1,−1
115 esav ANN=BEGN
116 esav ANN=BATR
117 esav ANN=TALK <CALL>
118 esav ANN=TALK <NAME>
119 esav ANN=WAIT 1 .0
120 esav ANN=BATV V 7.2
121 esav ANN=BATV I
122 esav ANN=TIRP ASN
123 esav ANN=WAIT 0 .3
124 esav ANN=TALK V_F144
125 esav ANN=TALK V_F225
126 esav ANN=TONE 1.0
127 esav ANN=CWPM 30,−1,−1,−1,−1
128 esav ANN=DONE
129 esav ANN=FREQ 144.225
130 esav ANN=STAT
131 esav ANN=RUN0 S6
132 esav ID=FOX2X_S0. fox Base l i n e
133 esav S0=BATR
134 esav S0=CONF FM
135 esav S0=TONE 1.0
136 esav S0=CWPM 30,−1,−1,−1,−1
137 esav S0=BEGN
138 esav S0=TALK <CALL>
139 esav S0=TALK <NAME>

140 esav S0=WAIT 0 .5
141 esav S0=TONE 1.3
142 esav S0=CWPM 25,−1,−1,−1,−1
143 esav S0=WAIT 0.15
144 esav S0=BATC EV 7.2
145 esav S0=WAIT 0 .5
146 esav S0=CODE IOWA CITY
147 esav S0=CODE AMATEUR RADIO
148 esav S0=CODE CLUB FOXHUNT
149 esav S0=CODE F W KENT PARK
150 esav S0=CODE MARCH 30 2025
151 esav S0=REM−
152 esav S0=REM−
153 esav S0=REM−
154 esav S0=BATR
155 esav S0=TONE 1.0
156 esav S0=CWPM 30,−1,−1,−1,−1
157 esav S0=DONE
158 esav ID=FOX2X_S1. fox CHiRP
159 esav S1=TONE 1.0
160 esav S1=CWPM 30,−1,−1,−1,−1
161 esav S1=BEGN
162 esav S1=TALK <CALL>
163 esav S1=TALK <NAME>
164 esav S1=CONF CW
165 esav S1=CHRP 1.0 6 ,0 0 .30 55
166 esav S1=CONF FM
167 esav S1=TONE 1.0
168 esav S1=CWPM 30,−1,−1,−1,−1
169 esav S1=DONE SILENT
170 esav ID=FOX2X_S2. fox _2025_TREK. hex
171 esav S2=BEGN
172 esav S2=TALK <CALL>
173 esav S2=TALK <NAME>
174 esav S2=TALK HEY_LARRY
175 esav S2=TALK HEY_MOE
176 esav S2=TALK SORRY_MOE
177 esav S2=TALK CURLY_THINKS
178 esav S2=TALK BIG_IDEA
179 esav S2=TALK 3S_TOUPEE
180 esav S2=TALK 3S_WISE_GUYA
181 esav S2=TALK 3S_HEY_MOE1
182 esav S2=TALK 3S_HEY_MOE2
183 esav S2=TALK 3S_HEY_MOE3
184 esav S2=TALK 3S_VICTIM1
185 esav S2=TALK 3S_TAXIDERMIST
186 esav S2=TALK 3S_PAUSE
187 esav S2=DONE
188 esav ID=FOX2X_S3. fox _2025_TREK. hex
189 esav S3=BEGN

360

ICARC FOX Transmitters: 102-73181 KC0JFQ

190 esav S3=TALK <CALL>
191 esav S3=TALK <NAME>
192 esav S3=TALK 2K1_H_9000
193 esav S3=TALK 2K1_GD_EVE
194 esav S3=TALK 2K1_CHESS2
195 esav S3=TALK 2K1_ENJOYA
196 esav S3=TALK 2K1_JUST_MOM
197 esav S3=TALK 2K1_MSG_4_U
198 esav S3=TALK 2K1_MSG_REP
199 esav S3=TALK 2K1_IGNIT
200 esav S3=TALK 2K1_DANGER
201 esav S3=TALK 2K1_FOOLPROOF
202 esav S3=TALK 2K1_HUMAN_ERR
203 esav S3=DONE
204 esav ID=FOX2X_S4. fox _2025_TREK. hex
205 esav S4=BEGN
206 esav S4=TALK <CALL>
207 esav S4=TALK <NAME>
208 esav S4=TALK TREK_YELLOW
209 esav S4=TALK TREK_AYE_SIR
210 esav S4=TALK TREK_ABSORPT
211 esav S4=TALK TREK_GREETIN
212 esav S4=TALK TREK_HAILING
213 esav S4=TALK TREK_MCCOY_
214 esav S4=TALK TREK_QUESTION
215 esav S4=TALK TREK_SQRE_NOST
216 esav S4=TALK TREK_SQRE_UNUS
217 esav S4=DONE
218 esav ID=FOX2X_S5. fox W i l d l i f e
219 esav S5=TONE 1.0
220 esav S5=CWPM 30,−1,−1,−1,−1
221 esav S5=BEGN
222 esav S5=TALK <CALL>
223 esav S5=TALK <NAME>
224 esav S5=CONF CW
225 esav S5=WAIT 3
226 esav S5=CHRP 1.0 12 0 0 .100 46
227 esav S5=WAIT 3
228 esav S5=CONF FM
229 esav S5=TONE 1.0
230 esav S5=CWPM 30,−1,−1,−1,−1
231 esav S5=DONE
232 esav ID=FOX2X_S6. fox CHiRP
233 esav S6=TONE 1.0
234 esav S6=CWPM 30,−1,−1,−1,−1

235 esav S6=BEGN
236 esav S6=TALK <CALL>
237 esav S6=TALK <NAME>
238 esav S6=CONF CW
239 esav S6=WAIT 3
240 esav S6=CHRP CHIRP_UP 12 0 0 .05 23
241 esav S6=CHRP CHIRP_DN 12 0 0 .05 23
242 esav S6=WAIT 3
243 esav S6=CONF FM
244 esav S6=TONE 1.0
245 esav S6=CWPM 30,−1,−1,−1,−1
246 esav S6=DONE
247 esav ID=FOX2X_S7. fox F i e ld Day
248 esav S7=CONF FM
249 esav S7=TONE 1.0
250 esav S7=CWPM 30,−1,−1,−1,−1
251 esav S7=BEGN
252 esav S7=TALK <CALL>
253 esav S7=TALK <NAME>
254 esav S7=WAIT 1 .0
255 esav S7=TALK FD_W0JV
256 esav S7=WAIT 1 .0
257 esav S7=CWPM 30,−1,−1,−1,−1
258 esav S7=TONE 1.5
259 esav S7=CODE IOWA CITY
260 esav S7=CODE AMATEUR RADIO CLUB
261 esav S7=CODE FIELD DAY OPERATIONS
262 esav S7=CODE AT F W KENT PARK
263 esav S7=WAIT 1 .0
264 esav S7=TALK FD_GAZELLE
265 esav S7=WAIT 1 .0
266 esav S7=REM−
267 esav S7=REM−
268 esav S7=REM−
269 esav S7=TONE 1.0
270 esav S7=CWPM 30,−1,−1,−1,−1
271 esav S7=DONE
272 esav ID=FOX2X_STOOGE. fox S8 Shemp
273 esav S8=TONE 1.0
274 esav S8=CWPM 30,−1,−1,−1,−1
275 esav S8=CONF FM
276 esav S8=BEGN
277 esav S8=TALK <CALL>
278 esav S8=TALK <NAME>
279 esav S8=CODE SING SING

361

ICARC FOX Transmitters: 102-73181 KC0JFQ

280 esav S8=CONF CW
281 esav S8=CODE E
282 esav S8=WAIT 120/40
283 esav S8=TALK TS1_LA
284 esav S8=WAIT 120/50
285 esav S8=TALK TS2_NY
286 esav S8=WAIT 120/60
287 esav S8=TALK TS3_SING
288 esav S8=WAIT 120/70
289 esav S8=TALK TS4_BOSTON
290 esav S8=WAIT 120/80
291 esav S8=CONF FM
292 esav S8=TONE 1.2
293 esav S8=CODE BEEN LISTENIN TO
294 esav S8=CODE THE THREE STOOGES
295 esav S8=TONE 1.0
296 esav S8=CWPM 30,−1,−1,−1,−1
297 esav S8=DONE
298 esav ID=FOX2X_STOOGE. fox S9 Moe
299 esav S9=TONE 1.0
300 esav S9=CWPM 30,−1,−1,−1,−1
301 esav S9=CONF FM
302 esav S9=BEGN
303 esav S9=TALK <CALL>
304 esav S9=TALK <NAME>
305 esav S9=CODE SING SING
306 esav S9=CONF CW
307 esav S9=CODE E
308 esav S9=WAIT 120/44
309 esav S9=TALK TS1R_LA
310 esav S9=WAIT 120/54
311 esav S9=TALK TS2R_NY
312 esav S9=WAIT 120/64
313 esav S9=TALK TS3R_SING
314 esav S9=WAIT 120/74
315 esav S9=TALK TS3R_SING
316 esav S9=WAIT 120/100
317 esav S9=CONF FM
318 esav S9=TONE 1.6
319 esav S9=CODE BEEN LISTENIN TO
320 esav S9=CODE THE THREE STOOGES
321 esav S9=TONE 1.0
322 esav S9=CWPM 30,−1,−1,−1,−1
323 esav S9=DONE
324 esav ID=FT, si5351_frq_cmds1_8 . fox
325 esav 144 .FOFF −8.000
326 esav 144.100=139D,206C0 , F4240
327 esav 144.105=139D,4 F4C0 , F4240
328 esav 144.110=139D,7E2BF, F4240
329 esav 144.115=139D,AD0C0, F4240

330 esav 144.120=139D,DBEBF, F4240
331 esav 144.125=139E,16A80 , F4240
332 esav 144.130=139E,45880 , F4240
333 esav 144.135=139E,7467F, F4240
334 esav 144.140=139E, A347F , F4240
335 esav 144.145=139E, D2280 , F4240
336 esav 144.150=139F, 0CE3F, F4240
337 esav 144.155=139F, 3BC40 , F4240
338 esav 144.160=139F, 6AA40 , F4240
339 esav 144.165=139F,9983F, F4240
340 esav 144.170=139F, C863F , F4240
341 esav 144.175=13A0,03200 , F4240
342 esav 144.180=13A0,31FFF, F4240
343 esav 144.185=13A0,60 E00 , F4240
344 esav 144.190=13A0, 8 FC00 , F4240
345 esav 144.195=13A0 ,BE9FF, F4240
346 esav 144.200=13A0 ,ED7FF, F4240
347 esav 144.205=13A1,283C0 , F4240
348 esav 144.210=13A1,571BF, F4240
349 esav 144.215=13A1,85FC0 , F4240
350 esav 144.220=13A1 ,B4DC0, F4240
351 esav 144.225=13A1 ,E3BBF, F4240
352 esav 144.230=13A2, 1 E77F , F4240
353 esav 144.235=13A2, 4 D580 , F4240
354 esav 144.240=13A2, 7 C37F , F4240
355 esav 144.245=13A2 , AB180 , F4240
356 esav 144.250=13A2 , D9F80 , F4240
357 esav 144.255=13A3,14B3F , F4240
358 esav 144.260=13A3,4393F, F4240
359 esav 144.265=13A3,72740 , F4240
360 esav 144.270=13A3 , A153F , F4240
361 esav 144.275=13A3 , D0340 , F4240
362 esav 144.280=13A4, 0AEFF, F4240
363 esav 144.285=13A4,39CFF, F4240
364 esav 144.290=13A4,68AFF, F4240
365 esav 144.295=13A4,978FF, F4240
366 esav 144.300=13A4 , C66FF , F4240
367 esav 144.305=13A5,012C0 , F4240
368 esav 144.310=13A5,300BF, F4240
369 esav 144.315=13A5, 5EEBF, F4240
370 esav 144.320=13A5, 8DCBF, F4240
371 esav 144.325=13A5 ,BCABF, F4240
372 esav 144.330=13A5 ,EB8BF, F4240
373 esav 144.335=13A6,26480 , F4240
374 esav 144.340=13A6,5527F, F4240
375 esav 144.345=13A6,8407F, F4240
376 esav 144.350=13A6 , B2E7F , F4240
377 esav ID=FT, si5351_frq_cmds2_8 . fox
378 esav 144.375=13A7 , A923F , F4240
379 esav 144.400=13A8, 9F5FF , F4240

362

ICARC FOX Transmitters: 102-73181 KC0JFQ

380 esav 144.425=13A9,959C0 , F4240
381 esav 144.450=13AA,8BD7F, F4240
382 esav 144.475=13AB,8213F, F4240
383 esav 144.500=13AC,784FF, F4240
384 esav 144.525=13AD,6 E8C0 , F4240
385 esav 144.550=13AE,64 C80 , F4240
386 esav 144.575=13AF,5 B040 , F4240
387 esav 144.600=13B0,51400 , F4240
388 esav 144.625=13B1,477C0 , F4240
389 esav 144.650=13B2 , 3DB80 , F4240
390 esav 144.675=13B3 ,33F3F , F4240
391 esav 144.700=13B4 , 2 A300 , F4240
392 esav 144.725=13B5,206C0 , F4240
393 esav 144.750=13B6 ,16 A80 , F4240
394 esav 144.775=13B7 , 0CE3F, F4240
395 esav 144.800=13B8,03200 , F4240
396 esav 144.825=13B8 ,ED7FF, F4240
397 esav 144.850=13B9 ,E3BBF, F4240
398 esav 144.875=13BA, D9F80 , F4240
399 esav 144.900=13BB, D0340 , F4240
400 esav 144.925=13BC, C66FF , F4240
401 esav 144.950=13BD,BCABF, F4240
402 esav 144.975=13BE, B2E7F , F4240
403 esav ID=FT, si5351_frq_cmds99_4 . fox
404 esav 87.500=0F80 ,32000 , F4240 ,200
405 esav 87.700=0F8A,6 C980 , F4240 ,200
406 esav 87.900=0F94 , A72FF , F4240 ,200
407 esav 88.100=0F9E , E1C7F , F4240 ,200
408 esav 88.300=0FA9,283BF, F4240 ,200
409 esav 88.500=0FB3,62D40 , F4240 ,200
410 esav 88.700=0FBD,9D6C0 , F4240 ,200
411 esav 88.900=0FC7 , D803F , F4240 ,200

412 esav 89.100=0FD2,1 E77F , F4240 ,200
413 esav 89.300=0FDC,59100 , F4240 ,200
414 esav 89.500=0FE6,93 A80 , F4240 ,200
415 esav 89.700=0FF0 ,CE3FF, F4240 ,200
416 esav 89.900=0FFB,14B3F , F4240 ,200
417 esav 90.100=1005 ,4F4C0 , F4240 ,200
418 esav 90.300=100F,89 E40 , F4240 ,200
419 esav 90.500=1019 ,C47BF , F4240 ,200
420 esav 90.700=1024 ,0AEFF, F4240 ,200
421 esav 90.900=102E,45880 , F4240 ,200
422 esav 91.100=1038 ,80200 , F4240 ,200
423 esav 91.300=1042 ,BAB7F, F4240 ,200
424 esav 91.500=104D,012BF, F4240 ,200
425 esav 91.700=1057 ,3BC40 , F4240 ,200
426 esav 91.900=1061 ,765C0 , F4240 ,200
427 esav 92.100=106B, B0F3F , F4240 ,200
428 esav 92.300=1075 ,EB8BF, F4240 ,200
429 esav 92.500=1080 ,32000 , F4240 ,200
430 esav 92.700=108A, 6 C980 , F4240 ,200
431 esav 92.900=1094 ,A72FF , F4240 ,200
432 esav ID=FT, si5351_frq_cmds80_1 . fox
433 esav 3.500=0D0D,DBEC0, F4240 ,5400
434 esav 3.550=0D17 ,77240 , F4240 ,5300
435 esav 3.600=0D1F, C223F , F4240 ,5200
436 esav 3.650=0D26 , C8C80 , F4240 ,5100
437 esav 3.700=0D2C, 8B0FF, F4240 ,5000
438 esav 3.750=0D01 ,05DBF, F4240 , 4 E00
439 esav 3.800=0D03 , 8 B73F , F4240 , 4 D00
440 esav 3.850=0D04 ,CCB00, F4240 , 4 C00
441 esav 3.900=0D04 , C9900 , F4240 , 4 B00
442 esav 3.950=0D03 ,8213F, F4240 , 4 A00

A few notes about the latest (2025-JUN-06 V4.07) updates to the commands loaded into the fox
transmitters.
Line 324 we see the intermediate file that was generated with the frequency table for the bottom
end of the 2M band.
Line 377 we add 25KHz steps to fill out the frequencies needed for a formal hunt. We don’t cur-
rently pay a penalty for haveing them present as the FRAM in these transmitters are all 256KB
or larger (1024 commands).

Line 403 we add the bottom of the FM broadcast band. This requires some reworking of the low
pass filter on the main board, so it’s not an easy switch from 2M to 3M (100MHz). We also need
to reduce power when operating in the FM band to remain within radiatiated emission limits im-
posed by the FCC.
You will also notice that we pick up a fourth numeric parameter for setting up the SI5351. We
change the divisor on the second MultiSynth to a 2 to account for the lower frequency.

363

ICARC FOX Transmitters: 102-73181 KC0JFQ

Line 432 was added for 80M band operation with the 4.09 revision. As mentioned elsewhere, op-
erating in this band requies the use of a band-specific RF amplifier daughterboard (this board
includes an LPF appropriate for the band) Earlier software will not allow this selection to be ef-
fected (it will be rejected!).
Operating down in the 80M band also makes much greated use of the second multisynth stage.
The divisor becomes much larger here!

364

Chapter 20

Sample Output

Sample output.

20.1 Sample HELP
Example Help listing.

Listing 20.1: FOX_ICARC_help.txt
10 9 : 5 1 : 1 1 : RDY00, 0 1 ∗ (Sp=0xBFD8) +1927 0 9 : 5 1 : 1 2 . 0 7 0
20 9 : 5 1 : 1 2 : s t s 0 1 , 0 0 ∗ TEST HELP ∗∗ TEST HELP ∗∗ TEST HELP ∗∗
30 9 : 5 1 : 1 2 : s t s 0 1 , 0 0 ∗ Idx MNE C l a s s −−−−−−−Arguments−−−−−−− Command Function
40 9 : 5 1 : 1 2 : s t s 0 1 , 0 1 ∗ 1 HELP SYS Help Menu and Items
50 9 : 5 1 : 1 2 : s t s 0 1 , 0 2 ∗ 2 HELP SYS <s t r i n g > matching h e l p i t e m s
60 9 : 5 1 : 1 2 : s t s 0 1 , 0 3 ∗ 3 ONCE SYS <name> Test run the named seqwuence
70 9 : 5 1 : 1 2 : s t s 0 1 , 0 4 ∗ 4 REM− SYS Remark , (s i d e −e f f e c t : s t o p s s c h e d u l e s)
80 9 : 5 1 : 1 2 : s t s 0 1 , 0 5 ∗ 5 RUN0 SYS RUN ALL S c h e d u l e s
90 9 : 5 1 : 1 2 : s t s 0 1 , 0 6 ∗ 6 RUN0 SYS <name> RUN S p e c i f i c S c h e d u l e
100 9 : 5 1 : 1 2 : s t s 0 1 , 0 7 ∗ 7 STAR SYS <time hh :mm: ss > S t a r t running s c h e d u l e s at s p e c i f i e d time
110 9 : 5 1 : 1 2 : s t s 0 1 , 0 8 ∗ 8 IDLE SYS STOP ALL S c h e d u l e s
120 9 : 5 1 : 1 2 : s t s 0 1 , 0 9 ∗ 9 STAT SYS <f l a g > System Status , (I) i d e n t scan
130 9 : 5 1 : 1 2 : s t s 0 1 , 1 0 ∗ 10 CONF SYS <keywords> Hardware C o n f i g u r a t i o n
140 9 : 5 1 : 1 2 : s t s 0 1 , 1 1 ∗ 11 TOYC SYS <r e s > (250 2K 4K NONE) Hi chg r t e DS1672 bat
150 9 : 5 1 : 1 2 : s t s 0 1 , 1 2 ∗ 12 TIME SYS <time value > Set Time (s e t DS1672)
160 9 : 5 1 : 1 2 : s t s 0 1 , 1 3 ∗ 13 D525 SYS <sub−command> ICS525 debug r o u t i n e s
170 9 : 5 1 : 1 2 : s t s 0 1 , 1 4 ∗ 14 TIME SETUP Time from DS1672 to System (NO Argument !)
180 9 : 5 1 : 1 2 : s t s 0 1 , 1 5 ∗ 15 EPOC SETUP <hours> Epoch o f f s e t (i . e . time zone)
190 9 : 5 1 : 1 2 : s t s 0 1 , 1 6 ∗ 16 CALL SETUP <c a l l > FCC Assigne d C a l l s i g n
200 9 : 5 1 : 1 2 : s t s 0 1 , 1 7 ∗ 17 NAME SETUP <nick > L o c a l Nickname
210 9 : 5 1 : 1 2 : s t s 0 1 , 1 8 ∗ 18 NICK SETUP <nick > a l i a s f o r "NAME" , but don ’ t use i t !
220 9 : 5 1 : 1 2 : s t s 0 1 , 1 9 ∗ 19 TONE PGM <f r e q >) Audio Tone (i n KHz)
230 9 : 5 1 : 1 2 : s t s 0 1 , 2 0 ∗ 20 CWPM PGM <wpm gap1 gap2 gap3> CW Chipping Rate
240 9 : 5 1 : 1 2 : s t s 0 1 , 2 1 ∗ 21 FREQ PGM <f r e q > Frequency (i n MHz)
250 9 : 5 1 : 1 2 : s t s 0 1 , 2 2 ∗ 22 FOFF PGM <o f f s e t > Frequency O f f s e t (i n KHz)
260 9 : 5 1 : 1 2 : s t s 0 1 , 2 3 ∗ 23 5351 PGM <key >,<value >,<value > , . . . SI5351 s e t u p group
270 9 : 5 1 : 1 2 : s t s 0 1 , 2 4 ∗ 24 BEGN PGM Key TX and Send C a l l s i g n (CW)
280 9 : 5 1 : 1 2 : s t s 0 1 , 2 5 ∗ 25 CODE PGM <message> Send Message (CW) up to 22 char
290 9 : 5 1 : 1 2 : s t s 0 1 , 2 6 ∗ 26 TALK PGM < f i l e −name> Play Voiced Message (EDMP TALK)
300 9 : 5 1 : 1 2 : s t s 0 1 , 2 7 ∗ 27 WAIT PGM <s e c o n . ds> Wait (s i m p l e d e l a y)
310 9 : 5 1 : 1 2 : s t s 0 1 , 2 8 ∗ 28 CHRP PGM <tone> <per> <dur> <cnt>Send c a r r i e r c h i r p
320 9 : 5 1 : 1 2 : s t s 0 1 , 2 9 ∗ 29 DONE PGM Send C a l l s i g n (CW) , SK (CW) , and unkey TX
330 9 : 5 1 : 1 2 : s t s 0 1 , 3 0 ∗ 30 BATC PGM <mod>,<key >,< s e t p o i n t > Transmit Code B a t t e r y Report
340 9 : 5 1 : 1 2 : s t s 0 1 , 3 1 ∗ 31 BATV PGM <mod>,<key> Transmit Vocal B a t t e r y Report
350 9 : 5 1 : 1 2 : mod : "E" encode (not CW) f o r BATC
360 9 : 5 1 : 1 2 : mod : "B" b a t t e r y r e a d i n g taken b e f o r e BEGN
370 9 : 5 1 : 1 2 : mod : "A" b a t t e r y r e a d i n g taken a f t e r BEGN
380 9 : 5 1 : 1 2 : key : "V" v o l t a g e , " I " c u r r e n t , "R" 5V r a i l
390 9 : 5 1 : 1 2 : s t s 0 1 , 3 2 ∗ 32 MODS SCHED <Sname p e r i o d o f f s e t > Modulus S c h e d u l e Set
400 9 : 5 1 : 1 2 : s t s 0 1 , 3 3 ∗ 33 MODC SCHED <Sname=> Modulus S c h e d u l e C l e a r
410 9 : 5 1 : 1 2 : s t s 0 1 , 3 4 ∗ 34 TALK DIRECTORY e s a v TALK=name , S t r t , Len , r a t e (i n FRAM as the TALK= f i l e)
420 9 : 5 1 : 1 2 : Waveform D i r e c t o r y Entry
430 9 : 5 1 : 1 2 : r a t e keys : 4K 5K 8K 10K 16K
440 9 : 5 1 : 1 2 : s t s 0 1 , 3 5 ∗ 35 f r e q DIRECTORY e s a v 144.150=13BF, 7 0 E40 , F4240 , 1 0 0 (i n FRAM as f r e q u e n c y r e c o r d)
450 9 : 5 1 : 1 3 : R e g i s t e r Params a r e S y n t h e s i z e r dependant
460 9 : 5 1 : 1 3 : s t s 0 1 , 3 6 ∗ 36 ESAV FRAM NAM=<t e x t > Save named r e c o r d i n next f r e e l o c a t i o n
470 9 : 5 1 : 1 3 : s t s 0 1 , 3 7 ∗ 37 EDMP FRAM " match s t r i n g " Dump a c t i v e r e c o r d s
480 9 : 5 1 : 1 3 : s t s 0 1 , 3 8 ∗ 38 EDID FRAM Flash JEDEC−ID t a b l e dump (PROG & WAVE)
490 9 : 5 1 : 1 3 : s t s 0 1 , 3 9 ∗ 39 ERAS FRAM <number> or "DEV" Rewrite <r e c o r d > to REM− (DEV, QTR, HALF)
500 9 : 5 1 : 1 3 : s t s 0 1 , 4 0 ∗ 40 EZER FRAM <number> Erase <r e c o r d > to ZERO

365

ICARC FOX Transmitters: 102-73181 KC0JFQ

Listing 20.2: FOX_ICARC_help.txt-1
510 9 : 5 1 : 1 3 : s t s 0 1 , 4 1 ∗ 41 ETAB FRAM Dump JEDEC−ID d e v i c e t a b l e
520 9 : 5 1 : 1 3 : s t s 0 1 , 4 2 ∗ 42 HERA FLASH ALL Hex e r a s e (e n t i r e WAVE d e v i c e)
530 9 : 5 1 : 1 3 : s t s 0 1 , 4 3 ∗ 43 HDMP FLASH <len −32B− l i n e s <hex−s t a r t <∗>>> Hex dump (WAVE d e v i c e)
540 9 : 5 1 : 1 3 : s t s 0 1 , 4 4 ∗ 44 HEND FLASH Find end o f waveform data
550 9 : 5 1 : 1 3 : s t s 0 1 , 4 5 ∗ 45 H115 FLASH Fast t e r m i n a l b i t r a t e
560 9 : 5 1 : 1 3 : s t s 0 1 , 4 6 ∗ 46 : hex FLASH−HEX : l l a a a a t t d d d d d d d d c c I n t e l HEX l o a d e r (WAVE d e v i c e)
570 9 : 5 1 : 1 3 : s t s 0 1 , 4 7 ∗ 47 HALT TEST Halt P r o c e s s o r
580 9 : 5 1 : 1 3 : s t s 0 1 , 4 8 ∗ 48 STOP TEST Stop P r o c e s s o r
590 9 : 5 1 : 1 3 : s t s 0 1 , 4 9 ∗ 49 REST TEST Reset System
600 9 : 5 1 : 1 3 : s t s 0 1 , 5 0 ∗ 50 TEST TEST Hardware Test Subsystem
610 9 : 5 1 : 1 3 : STS01 , 5 1 ∗ Handler_HELP (cmd_help . c ∗) 1 . 0 0 Sec
620 9 : 5 1 : 1 3 : RDY00, 0 0 ∗ (Sp=0xBF94) +1859 0 9 : 5 1 : 1 4 . 1 9 0

20.2 Sample STAT
Example Stat Listing.

Listing 20.3: FOX_ICARC_stat.txt
11 2 : 0 4 : 4 5 : s t s 0 9 , 0 0 ∗ <<<−−− STAT ∗∗∗∗∗∗∗∗ STAT −−−>>>
21 2 : 0 4 : 4 5 : s t s 0 9 , 0 1 ∗ KC0JFQ FOX T r a n s m i t t e r V3 . 8 8
31 2 : 0 4 : 4 5 : s t s 0 9 , 0 2 ∗ S o f t w a r e Bld : Feb 7 2025 1 3 : 3 3 : 0 8
41 2 : 0 4 : 4 5 : s t s 0 9 , 0 3 ∗ System Time : 1 3 : 0 4 : 4 6 . 1 6 0 (6 5 0 8 6)
51 2 : 0 4 : 4 5 : s t s 0 9 , 0 4 ∗ Epoch O f f s e t : 1 9 : 0 0 : 0 0 (6 8 4 0 0)
61 2 : 0 4 : 4 5 : s t s 0 9 , 0 5 ∗ TOY Clock : 000CDBBE 00 0 4 ; Osc ON, Charge D i s a b l e d
71 2 : 0 4 : 4 5 : s t s 0 9 , 0 6 ∗ Sys Upd Flg : Si5351_INIT
81 2 : 0 4 : 4 5 : s t s 0 9 , 0 7 ∗ Conf Jumpers : NOT_Master NOT_Test
91 2 : 0 4 : 4 5 : s t s 0 9 , 0 8 ∗ Flash Prog U3 : 0 4 . 2 5 . 0 3 MB85RS256TY FLASH_FRAM F u j i t s u 256K−b i t s 1024− r e c o r d s CMD3
101 2 : 0 4 : 4 5 : s t s 0 9 , 0 9 ∗ Flash WAVE U12 : 9D. 7 E . FF 25LD040 FLASH_PAGE I S S I 4096K−b i t s 62− s e c o n d s CMD4
111 2 : 0 4 : 4 5 : s t s 0 9 , 1 0 ∗ Flash HEX Dev : WAVE/FLASH/U12
121 2 : 0 4 : 4 5 : s t s 0 9 , 1 1 ∗ Battery , I d l e : 8 . 8 0 5V(0 x0387) [9 . 7 5 1 e −03] 23mA(0 x002F)
131 2 : 0 4 : 4 5 : s t s 0 9 , 1 2 ∗ Battery , TX: 8 . 6 2 0V(0 x0374) [9 . 7 5 1 e −03] 106mA(0 x00D9)
141 2 : 0 4 : 4 5 : s t s 0 9 , 1 3 ∗ Analog Others : Reg+5V: 5 . 0 9 0V(0 x020A) [9 . 7 5 1 e −03] Switch : 0 . 0 0 0V CdS−C e l l : 0 . 0 0 0V
151 2 : 0 4 : 4 5 : s t s 0 9 , 1 4 ∗ UART b u f f e r : 175 (NET: 0 , USB: 9 6)
161 2 : 0 4 : 4 5 : s t s 0 9 , 1 5 ∗ <<<−−− S c h e d u l i n g PARAMETERS −−−>>>
171 2 : 0 4 : 4 5 : s t s 0 9 , 1 6 ∗ MOD S c h e d u l e 00 I d l e S0= 360 0
181 2 : 0 4 : 4 5 : s t s 0 9 , 1 7 ∗ MOD S c h e d u l e 01 I d l e S1= 360 0
191 2 : 0 4 : 4 5 : s t s 0 9 , 1 8 ∗ MOD S c h e d u l e 02 I d l e S6= 600 0
201 2 : 0 4 : 4 5 : s t s 0 9 , 1 9 ∗ MOD S c h e d u l e 03 I d l e S7= 360 0
211 2 : 0 4 : 4 5 : s t s 0 9 , 2 0 ∗ MOD S c h e d u l e 04 I d l e S8= 360 0
221 2 : 0 4 : 4 5 : s t s 0 9 , 2 1 ∗ MOD S c h e d u l e 05 I d l e S9= 360 15
231 2 : 0 4 : 4 5 : s t s 0 9 , 2 2 ∗ Run S t a r t : 1 3 : 0 5 : 5 9 Waiting (s t a r t : 4 7 1 5 9 now : 4 7 0 8 6)
241 2 : 0 4 : 4 5 : s t s 0 9 , 2 3 ∗ <<<−−− TRANSMITTER PARAMETERS −−−>>>
251 2 : 0 4 : 4 5 : s t s 0 9 , 2 4 ∗ C a l l s i g n : W0JV
261 2 : 0 4 : 4 5 : s t s 0 9 , 2 5 ∗ Nickname : FOX21
271 2 : 0 4 : 4 5 : s t s 0 9 , 2 6 ∗ zNEO Port B i t s : OUT: E0 , 0 1 , 0 5 , 2 0 , 0 0 , 0 0 , 0 0 , 0 0 IN : F0 , 0 1 , 7 5 , 1 4 , 0 0 , 8 0 , 0 0 , 0 4
281 2 : 0 4 : 4 5 : s t s 0 9 , 2 7 ∗ Radio C o n f i g : 0x1F0C43 SI5351 State −T0 TX_ENA TONE PWMH0 5MON SWIT PHOTO IMON VMON
291 2 : 0 4 : 4 5 : s t s 0 9 , 2 8 ∗ S i 5 3 5 1 C o n f i g : 0x00B9 CLK0 8MA 8PF 0x00B9
301 2 : 0 4 : 4 5 : s t s 0 9 , 2 9 ∗ S i 5 3 5 1 D i v i s o r : 0x13A1 , 0 xE3BBF , 0 xF4240 0 x0100 , 0 x00 , 0 x01
311 2 : 0 4 : 4 5 : s t s 0 9 , 3 0 ∗ Frequency : 1 4 4 . 2 2 5 (Xtal : 2 0 . 0 0 0 MHz) O f f s e t =−8.000KHz
321 2 : 0 4 : 4 5 : s t s 0 9 , 3 1 ∗ CW c o n f i g : 30 WPM 1 , 3 , 7 , 1 4 [0 x186A] 1 . 0 0 0KHz
331 2 : 0 4 : 4 5 : s t s 0 9 , 3 2 ∗ S t a t e Delays : T0 : 1 0 T1 : 5 0 T2 : 1 5 0 T4 : 5 0 T5 : 1 0
341 2 : 0 4 : 4 5 : STS09 , 3 3 ∗ Handler_STAT I (cmd_stat . c ∗) 0 . 4 2 Sec

366

ICARC FOX Transmitters: 102-73181 KC0JFQ

20.3 ICS525 20MHz Frequency Table
// 1064 FILE ics525_data_test.h

//===//
// //
// IDT-525-02 frequency control structure... 525 //
// Input Clock Frequency 20.000 MHz //
// Output Divisor 1 (Out_Div column) //
// //
// NOTE that we calculate the frequency table using double //
// precision numbers. The zNEO will be using single //
// precision, so the frequency number stored in the //
// zNEO will differ in the least significant digits. //
// //
//===//

#ifndef __ics525__
#define __ics525__

struct IDT525 {
float Frequency; // Programmed Frequency (in MHz)
float Offset; // Offset from 5KHz channel center

unsigned short VCO_Div; // VCO Divisor (9 bits)
unsigned char Ref_Div; // Reference Divisor (7 bits)
unsigned char Out_Div; // Output Divisor (3 bits)

}; //
//

#endif

{ 144.150943, 943.000, 183, 51, 6}, // R=1000
{ 144.210526, 526.000, 129, 36, 6}, // R=1000
{ 144.285714, 714.000, 194, 54, 6}, // R=1000
{ 144.375000, 0.000, 223, 62, 6}, // R=Ideal
{ 144.390244, 244.000, 140, 39, 6}, // R=500
{ 144.545454, 454.000, 151, 42, 6}, // R=500
{ 144.615384, 384.000, 227, 63, 6}, // R=500
{ 144.680851, 851.000, 162, 45, 6}, // R=1000
{ 144.705882, 882.000, 115, 32, 6}, // R=1000
{ 144.905660, 660.000, 184, 51, 6}, // R=1000

367

ICARC FOX Transmitters: 102-73181 KC0JFQ

368

Chapter 21

Power Worksheets

Power Measurements from working units.

21.1 FOX6
This station is using the 102-73161-25 board. This power amp is a dual logic gate implementa-
tion.

UNIT NAME Artwork Revision Power Amp Revision Output Power
FOX6 102-73161-25 102-73161-24 40mW

Idle Voltage Idle Current Active Voltage Active Current
9.50V 15mA 9.0V 58mA

Table 21.1: FOX6/102-73161-25

Additional information on this amplifier is found on page 77.

21.2 FOX22
This station is equipped with the DRA818 tranceiver module. (it may be operated as a wildlife
tracker, but it’s a power pig).

UNIT NAME Artwork Revision Power Amp Revision Output Power
FOX22 102-73181-10 102-73181-36 100mW

Idle Voltage Idle Current Active Voltage Active Current
9.50V 21mA 8.0V 250mA

Table 21.2: FOX22/102-73181-10

More information on the power amp may be found on page 94.

21.3 FOX27
This station was used to test with several RF amplifiers. (will not operate as a wildlife tracker).

369

ICARC FOX Transmitters: 102-73181 KC0JFQ

UNIT NAME Artwork Revision
FOX27 102-73181-10

Table 21.3: FOX27/102-73181-10

PA Revision Output Power Idle V Idle I Active V Active I
102-73161-28 30mW 9.50V 20mA 9.1V 65mA
102-73161-28 70mW 9.50V 20mA 9.1V 80mA
102-73161-28 100mW 9.50V 25mA 9.1V 90mA
102-73161-29 35mW 9.50V 20mA 9.1V 60mA
102-73181-28 50mW 9.50V 20mA 9.1V 90mA
102-73181-28 50mW 9.50V 16mA 9.1V 85mA
102-73181-28 110mW 9.50V 20mA 9.1V 100mA

Table 21.4: FOX27/102-73181-AMPS

Additional information on the 102-73161-28 amplifier is found on page 80.
Additional information on the 102-73161-29 amplifier is found on page 78.
Additional information on the 102-73181-28 amplifier is found on page 82.

21.4 FOX29
This station is equipped with the basic MMIC amplifier (will not operate as a wildlife tracker).

UNIT NAME Artwork Revision Power Amp Revision Output Power
FOX29 102-73181-10 102-73161-28 50mW

Idle Voltage Idle Current Active Voltage Active Current
9.50V 16mA 9.1V 85mA

Table 21.5: FOX29/102-73181-10

Additional information on the amplifier is found on page 80.

21.5 FOX32
This station is equipped to operate in both the normal mode (i.e. voice and CW) as well as
wildlife tracker mode.

UNIT NAME Artwork Revision Power Amp Revision Output Power
FOX32 102-73181-10 102-73181-28 40mW

Idle Voltage Idle Current Active Voltage Active Current
9.50V 16mA 9.1V 85mA

Table 21.6: FOX32/102-73181-10

370

ICARC FOX Transmitters: 102-73181 KC0JFQ

Additional information on thie amplifier is found on page 82.

371

ICARC FOX Transmitters: 102-73181 KC0JFQ

372

Chapter 22

Configuration Worksheets

This worksheet may be used to map out an operating schedule for up to 8 transmitters.
The MOD period is 600 and the MOD offset is across the bottom of the X axis.
Starting with an offset of zero, plot the ON time of the first transmitter and allow for a few sec-
onds of gap to estimate the best time for the second transmitter to start. Continue on like this
until all offsets are established or it is discovered that the message time is too long.

Figure 22.1: Worksheet, 10 minute cycle

373

ICARC FOX Transmitters: 102-73181 KC0JFQ

This worksheet may be used to map out an operating schedule for up to 8 transmitters using a
period of 900 seconds.
As above, start with an offset of zero, plot the ON time of the first transmitter and allow for a
few seconds of gap to estimate the best time for the second transmitter to start. Continue on like
this until all offsets are established or it is discovered that the message time is too long.

Figure 22.2: Worksheet, 15 minute cycle

374

ICARC FOX Transmitters: 102-73181 KC0JFQ

This worksheet presents a standard 5-minute ARDF contest schedule using a set of 6 transmit-
ters. The codewords are shown above the operating window for each transmitter.
The fox transmitters each have about a 55 second window in which to send a message. The five
are time multiplexed and are all operating on the same frequency. The last transmitter, the FB
line, is the finish beacon that transmits continuously on a different frequency.

Figure 22.3: Worksheet, 5 minute cycle

375

ICARC FOX Transmitters: 102-73181 KC0JFQ

This is an example schedule as it is worked out on the worksheet.
Here we replay the old Three Stooges "You Are Now in Sing-Sing" gag on two stations. Four
other stations are members of this hunt group and they must all play together.
This is possible using two assumptions:

First
The clocks are all synchronized the night prior to the hunt and that they track reasonably
well (within a second or two per day).

Second
The software in the fox transmitter is at or above V3.76. This revision improved the way
the TIME gets time from the DS1672 TOY clock. The end result being the fox transmit-
ter times run within 10s of milliseconds of each-other.

Figure 22.4: Conversation, 5 or 6 minute cycle

This timing chart shows activity where FOX21 is using the S8= sequence and FOX22 is using the
S9= sequence. The remaining transmitters in the group FOX23..FOX26 are all using the S0= se-
quence. Timing for S0, S8, and S9 are all a six minute period and the transmitters are sequen-
tially staggered every 60 seconds. The S8 and S9 sequence can be found in section on page 346.

FOX23..FOX26 all run on a nor mal schedule and simply send the CW message out after station
identification. Following the CW message we send a final station identification and the go silent
until next time around.

376

ICARC FOX Transmitters: 102-73181 KC0JFQ

FOX21 and FOX22 attempt to reenact a sceen from an old Three Stooges short where Shemp hyp-
notises Moe. As Shemp take Moe around the country in his hypnotised State. When Shemp calls
out: "You are now in Sing-Sing", Moe picks up a straight-backed char and replies" "I am now in
Sing-Sing". Shemp moves on to Boston: "You are now in Boston". Moe, however, is stuck (behind
bars formes by the back of the chair): "I am now in Sing-Sing".
FOX21 plays the the part of Shemp, calling out the part of the country Moe now occupies.
FOX22 plays the the part of Moe, providing confirmation that the hypnotic trance has been effec-
tive.
FOX21 and FOX22 are interleaved for this call&reply interaction. That is they are operating in
close synchronization requiring an accurate time in the TOY clock. This seems to work well if the
TOY clock has been updated the day prior to the hunt.
FOX23..FOX26 operate normally using the S0 sequence.

We can zoom in on the FOX21 and FOX22 activity such that you get an idea of the timing needed
for this to work.

Figure 22.5: Conversation, FOX21/FOX22

FOX21 and FOX22 get their signon traffic out of the way and then settle into the interleaved con-
versation. You can refer to the SX_STOOGE.fox sequence in section on page 346.
After the signon message we specify a synchronous wait with: WAIT 120/40 on FOX21 and WAIT
120/44 on FOX22. The period of 120 was selected as this is the time allocated to FOX21 and
FOX22. Since these are running on a 360 second cycle, the 120 second merges seamlessly.
The signoff activity is similarly scheduled to get the FOX21 signoff to occur first followed by the
FOX22 signoff.

377

ICARC FOX Transmitters: 102-73181 KC0JFQ

Example of an interleaved group (the S6 schedule)

Figure 22.6: CHiRP, FOX21..FOX26

This is a difficult fox hunting mode used to illustrate the fine-grained timing capability of the fox
transmitter system. This mode depends on the TOY clock providing reasonable timing accuracy
which is not difficult to achieve. The sequence shown, S6, can be seen in section 19.11 on page
341.

We begin by making the fox transmitter identify every 10 minutes, as indicated by the
signon/signoff message in figure 22.6. This is to satisfy FCC part-95 station identification require-
ments.
The BEGN command sends our callsign in code which is followed by the TALK <CALL> and
TALK <NAME> commands to verbally identify.
The DONE command that occurs after chirping for just over 9 minutes. This is to satisfy FCC
part-95 to identify at the end of a transmission. We leave the off verbalization to minimize the
on-air time we aren’t chirping.

The main body of the message consists of an audio chirp where the audio tone changes between a
few hundred cycles/second and a few thousand cycles/second. The start and stop frequency hav-
ing been chosen to keep the signal bandwidth within what is allowed and what the transmitter
is capable of. For the first 4+ minutes the audio tone climbs in frequency (an up-sweep) while in
the last 4+ minutes the audio tone falls in frequency (a dowen-sweep).

378

ICARC FOX Transmitters: 102-73181 KC0JFQ

The timing chart, then, shows the transmitting schedule we are attempting to follow. The chart
shows a full 10-minute cycle, so you can think of duplicating the 10 minute chart to the right re-
peatedly.
The FOX21 line illustrates the full cycle each transmitter goes through. We start, of course, with
the signon BEGN, TALK <CALL>, and TALK <NAME>. This signon activity takes about 12 sec-
onds to execute. The FOX21 unit uses the following chirp commands: CHRP CHIRP_UP 12 0
0.05 23 and CHRP CHIRP_DN 12 0 0.05 23 to send out 46 chirps (taking 9.2 minutes). After th
46 chirps are sent we send our signoff with only the station callsign (which takes less than 10
econds).

The FOX22 line is the same but shifted, in tim, by 100 seconds. You see, from the chart, that the
FOX22 signon message occurs, as expected, 100 seconds into the (synchronous) 600 second cycle.
You should also notice that the chirps are shifted to the right by 2 seconds. This comes about
from the following chirp commands: CHRP CHIRP_UP 12 2 0.05 23 and CHRP CHIRP_DN 12 2 0.05
23.
The argument after the period (i.e. the 12) is changed to 2 to shift the chirp off from on top of
the chirp from FOX21.

The schedule for FOX23 has a scheduling offset of 200 seconds, again visible in the chart. The
chirp commands loaded into FOX23 are further offset as follows: CHRP CHIRP_UP 12 4 0.05 23 and
CHRP CHIRP_DN 12 4 0.05 23.
The argument after the period (i.e. the 12) is changed here to 4 shifting the chirp out from under
FOX21 and FOX22.

379

ICARC FOX Transmitters: 102-73181 KC0JFQ

Use these checklists to prepare for a fox hunt. As shown, the unit names and hardware notes are
for the authors collection of transmitters. You can choose to use the same set of unit names to
keep life simple. The authors stable of transmitters has all hardware versions while you would
expect to have all the same version transmitter.

Figure 22.7: Worksheet, preparation checklist

380

ICARC FOX Transmitters: 102-73181 KC0JFQ

Build your transmitter plan noting which transmitters will be in use. The IN USE column
may be used to determine which stations will be used for the hunt. Your antenna management
plan may benefit from the next column, the ANT ATTACHED column, to make sure you have
counted antennas correctly.
Note in the SCH LOADED column, the names(s) of the active schedules. These will show up in
the RUN0 commands in the INI= file.
The station frequency should be tracked in the STATION FREQUENCY column. This should
come from the active schedules (not from the INI= file). Typically the INI= file will immedi-
ately produce an aliveness report on a dedicated frequency.
Log the battery voltage in the BATTERY VOLTAGE column by turning the unit on and record-
ing the voltage and current reports. This would typically occur the night before, so double check
that power is off after the prior evening setup.
Check off the SYSTEM TIME SET column as the units time is updated.
The next three columns, the OPERATING SCRIPTS PRESENT, WAV FILES PRESENT and
STARTUP SCRIPT LINKED provide logging space for setup that should only need to be done
when the station is initially setup. Use the STARTUP SCRIPT LINKED to indicate which
schedules are active in this station.
The last column may be used to record the active schedule to verify that a sane set of schedules
are loaded into the transmitters.

381

ICARC FOX Transmitters: 102-73181 KC0JFQ

382

Chapter 23

Informal Fox Hunt Procedures and
Rules

General checklist for hunt preperation.

23.1 Prior to the Hunt
A day or two prior to the hunt.
Run the fox_label program to generate a new set of event labels, transmitter logsheet, and
other cards that are useful for the hunt.
Note that the fox_label program generates more labels than you will need for the hunt, so don’t
print any more than you need. Details of the fox_label program are in section 16.1 starting on
page 281.

23.1.1 Transmitter Time Update
Install an antenna or dummy load as you plug in each transmitter in turn to update the TOY
clock. Use the fox_simple utility descripbed in section 12 on page 235.
Something along the lines of:

fox_simple -t10 -SFOX2X

The -S argument is unique for transmitters that have the FT232R installed.

Check battery voltage as you run the update. Installing the TEST jumper keeps the signon mes-
sage from transmitting and should run the STAT command which reports current battery volt-
age.

You can use the preparation checklist (in section 22.7 on page 380) to record battery readings.

383

ICARC FOX Transmitters: 102-73181 KC0JFQ

23.1.2 Labels
Files we will not use:

• fox_label_A_bot.pdf

• fox_label_B_power.pdf

Files we will use:

• fox_label_A_top.pdf

• fox_label_A_chk.pdf

• fox_label_B_cards.pdf

• fox_label_B_hunter.pdf

• fox_label_C_FOX21.pdf
. . .

• fox_label_C_FOX32.pdf

fox_label_A_chk.pdf

This is our transmitter checklist.
Update the fox_label.csv file as you set the Toy CLOCK to reflect the current hardware
configuration if it has changed.
You need to re-run the fox_label program after changes to the fox_label.csv file be-
fore printing any serialized labels. You need to re-run the fox_label program The
fox_label_A_chk.pdf has the serial number information so you’ll need a fresh copy
of this for the hunt.

fox_label_A_bot.pdf

These are the FCC station identification labels that do not change. These labels should be
permanantly affixed to the bottom side of the enclosure, the side the circuit board is fixed
to.
Do not print these labels.

fox_label_A_top.pdf

These are the hunt serialization labels. The hunter needs visual access to this label to
record the serial numbers on hi/her hunt card.
These are serialzed, so must be printed along with any other serialzed labels from the same
ruin of the fox_label program.

fox_label_B_cards.pdf

These are the hunter log cards. The hunter records that serial numbers from the fox trans-
mitter on this card during the hunt.
Print enough for the expected turnout.
These cards are not hunt specific. Save any leftover cards for the next hunt.

384

ICARC FOX Transmitters: 102-73181 KC0JFQ

fox_label_B_hunter.pdf

These are the hunter registration cards.
Just before the start of the hunt, each participant records their callsign and starting tim on
this card.
When they complete the hunt, record the finish time and the number of fox transmitters
that were found.
These cards are also not hunt specific. Save any leftover cards for the next hunt.

fox_label_B_power.pdf

These are power labels for the RF amplifiers.
Do not print these labels.

fox_label_C_FOX*.pdf

These are the transmitter serialization cards. These are reprinted for each hunt with the
unique serial number for the transmitter.
A stack of these are rubber-banded to the transmitter so the hunter can take one as a
record of finding the tranmsitter.
These are serialzed, so must be printed along with any other serialzed labels from the same
ruin of the fox_label program.

23.2 Receiver Preparation
Load your tracking receiver up with all of the operating frequencies that will be used during the
hunt.
As an example, this is the authors setup for a Kenwood handheld:

Rx Channel Rx Frequency Description
10 144.150 Common Announce Frequency
11 144.225 FOX21..FOX26 Hunt Group
12 144.250 FOX33..FOX38 Hunt Group
13 144.285 FOX5..FOX8 (FOX20) Hunt Group
14 144.300 FOX20 Training
15 144.305 Raspberry-PI Transmitter
16 144.325 FOX27..FOX32 Hunt Group
17 144.565 WB6EYV MicroHunt Transmitter

23.3 Transmitter Preparation
Affix the fox_label_A_top.pdf labels to the corresponding transmitter. These are affixed to the
removable cover of the transmitter.
Rubber-band the stack of fox_label_C_FOX*.pdf cards to the transmitter.
Verify power off!!!
Power switch flipped away from antenna conenctor.

385

ICARC FOX Transmitters: 102-73181 KC0JFQ

You may, to verify battery condition, switch the transmitter on to hear the battery report on
144.150MHz. If the battery is above 7.2 volts, you probably have enough battery power left for
the hunt. See the power plots in section 4.10.2 on page 61.

Again, verify power off when you’re done!!!
Power switch flipped away from antenna conenctor.

23.4 Transmitter Deposit
This one is simple.
Set you handheld radio to 144.150MHz.
Find your hiding spot, keeping the bright orange antenna and the serialized label and serialized
cards visible, switch the transmitter on and listen for the signon message as you place the trans-
mitter.
The TOY clock keeps them all in sync, so no special handling required. An inadvertant bump of
the power switch is remedied by simply turning it back on, it will be in sync with everyone by
the next cycle.

23.5 Participant Signin
Give the participant one of the fox_label_B_cards.pdf cards to log their hunt and have the
participant fill in the fox_label_B_hunter.pdf card with a name and callsign. Also log the
starting time in the Time OUT field. Keep the fox_label_B_hunter.pdf card at the control
area.
Remind them to take a fox_label_C_FOX*.pdf card from the transmitter or record the se-
rial numbers on their log card. Only one fox_label_C_FOX*.pdf card please!

23.6 Active Hunt
You can monitor the transmitters on their assigned frequencies.
The fox_label_A_chk.pdf has the operating frequencies.
Only one transmitter should be active if you’ve correctly set up the sequences and the MOD
schedules. When running a full hunt group, one transmitter in the group should be almost always
be active. With a well built up sequence inter-message gaps should be short
Multiple transmitters active at one time indicates a problem with the TOY clock or an incorrect
MOD configuration.

23.7 Hunt Completion
When your hunters return, record the current time in the Time IN field on the
fox_label_B_hunter.pdf card.
Count collected cards and verify hand-written numbers with you master copy on the
fox_label_A_chk.pdf sheet.
Calculate elapsed time and record in the Time Delta field.

386

ICARC FOX Transmitters: 102-73181 KC0JFQ

23.8 Hunt Teardown
Collect all the transmitters.
No power switch rules, simply shut it off.
If you want/need to know if it’s still working, turn it back on and tune to 144.150MHz for the
signon message.

23.9 Awards Ceremony
May the best man win...
Sort the fox_label_B_hunter.pdf by the Units Located field.
Then, within Units Located, by Time Delta field.
Your event winner is on the top of the pile. Award the winner the melted Snickers bar.

387

ICARC FOX Transmitters: 102-73181 KC0JFQ

23.10 Hunt Rules
Here are our basic rules:

23.10.1 Observe Venue Rules
We are guests in our hunt venue, be respectful of venue rules.
Transmitters will be accessible, such that you can easily reach a transmitter log card or see
the label. The antenna may not be visible from your vehicle.
Your hunt organizers probably detest stickle burrs and ticks (not to mention lions, tighers,
and bears).
Oh my!

23.10.2 Equipment
You have to walk around (or driver around) with your receiver and antenna system. Other
than practical limits, we like to see what you bring to the hunt.
A reminder for the novice: the transmitter emits energy in the 2m spectrum as well as
the 575nm to 600nm spectrum. Energy in the 575nm to 600nm spectrum is strictly
line-of-sight. Energy in the 575nm to 600nm spectrum is obstructed by leaves, grass, pa-
per, weeds and trees.

Fox Transmitter
The fox transmitter itself is housed in a Hammond 1599E enclosure. All of the existing fox
transmitters are black. The dimensions are 6.69 in. by 3.37 in. They are 1.37 inches thick.
The transmitting antenna is bright orange!

Fox Transmitter Identification
Each transmitter has a permanent label on the bottom that identifies the equipment and
the licensees authority to operate.

On the top of the enclosure, which should be visible to the hunter, is the hunt identifica-
tion label and a small collection of identity cards.
Take on (and only one) of the identity cards to record your find. If none of the identity
cards are left, record the serial numbers from the identification label. See examples in sec-
tion 16.5 on page 287.

Fox Hunt Cards
Check Sheet
Hunt Labels
Transmitter found cards
Hunter Log Cards
Hunter In/Out record card

388

ICARC FOX Transmitters: 102-73181 KC0JFQ

23.10.3 Checkin
The event is timed from your departure to your return. We’re laid back for this event.
You should be given a log card, with room to record 9 transmitter ID/Code. Feel free to
record on the backside of the card.
You will also fill out a hunter card with your name/call and time out. This card remains
at the checkin desk. When you are finished, your finish time is recorded on the card along
with you transmitter count.

23.10.4 Transmitters
Please do not switch the any of the transmitters off!

It makes them hard to find when the event organizers forget where they left them :-)

Should you bump the switch, no harm / no foul, simply move it back to the on position
(towards the antenna connector) and it will take care of itself.
Please take only one identification card from the stack that is rubber banded to the trans-
mitter. If none are left, record the ID and Event Validation Code from the transmitter
label on your log card.

23.10.5 Hunt Groups
We have enough transmitters to operate multiple concurrent hunts. Each hunt group
consists of up to six transmitters operating on a common frequency.
Additional hunt groups will operate on unique frequencies.

23.10.6 Team Hunt
If we have enough participants, why not!

389

